Skip to main content

Functional Based Fuzzy Logic Query Library

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15166))

Included in the following conference series:

  • 100 Accesses

Abstract

This paper introduces the concept of the FLINQ library to perform linguistic fuzzy queries. This library is based on a functional programming paradigm and implemented in C# language as an extension of the LINQ library. Its main goal is to provide an easy-to-use and effective mechanism for performing linguistic queries in which fuzzy sets describe linguistic terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  2. Chen, C., Shen, Q.: Rough-fuzzy rule interpolation for data-driven decision making. In: Jansen, T., Jensen, R., Mac Parthalain, N., Lin, C.M. (eds.) Advances in Computational Intelligence Systems: Contributions Presented at the 20th UK Workshop on Computational Intelligence, 8–10 September 2021, Aberystwyth, Wales, UK 20, pp. 27–37. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87094-2_3

  3. Grycuk, R.: Fast solar image retrieval and classification by fuzzy rules. In: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7 (2022)

    Google Scholar 

  4. Yera, R., Alzahrani, A.A., Martínez, L.: A fuzzy content-based group recommender system with dynamic selection of the aggregation functions. Int. J. Approximate Reasoning 150, 273–296 (2022)

    Article  MATH  Google Scholar 

  5. Chen, B.: Application of intelligent fuzzy decision tree algorithm in English translation education. In: Jan, M.A., Khan, F. (eds.) Application of Big Data, Blockchain, and Internet of Things for Education Informatization, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 465, pp. 310–315. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-23950-2_33

  6. Singh, A.K., Singh, R., Kumar, G., Soni, S.: Power system fault diagnosis using fuzzy decision tree. In: 2022 IEEE Students Conference on Engineering and Systems (SCES), Prayagraj, India, pp. 1–5 (2022)

    Google Scholar 

  7. Jha, S., Mehta, A.K.: An evolutionary algorithm based feature selection and fuzzy rule reduction technique for the prediction of skin cancer. Concurr. Comput. Pract. Exp. 34(5), e6694 (2022)

    Article  MATH  Google Scholar 

  8. Wróbel, M., Starczewski, J.T., Fijałkowska, J., Siwocha, A., Napoli, Ch.: Handwritten word recognition using fuzzy matching degrees. J. Artif. Intell. Soft Comput. Res. 11(3), 229–242 (2021)

    Article  Google Scholar 

  9. Niewiadomski, A., Kacprowicz, M.: Type-2 fuzzy logic systems in applications: managing data in selective catalytic reduction for air pollution prevention. J. Artif. Intell. Soft Comput. Res. 11(2), 85–97 (2021)

    Article  MATH  Google Scholar 

  10. Laktionov, I., Vovna, O., Kabanets, M.: Information technology for comprehensive monitoring and control of the microclimate in industrial greenhouses based on fuzzy logic. J. Artif. Intell. Soft Comput. Res. 13(1), 19–35 (2023)

    Article  MATH  Google Scholar 

  11. Ferranti, L., Boutellier, J.: FuzzyLogic.jl: a flexible library for efficient and productive fuzzy inference. In: 2023 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–5 (2023)

    Google Scholar 

  12. Fosci, P., Psaila, G.: A unified view of multi-grade fuzzy-set models in J-CO-QL+. Neurocomputing 565, 126968 (2024)

    Article  MATH  Google Scholar 

  13. Medina, J.M., Blanco, I.J., Pons, O.: A fuzzy database engine for mongoDB. Int. J. Intell. Syst. 37(9), 5691–5724 (2022)

    Article  MATH  Google Scholar 

  14. Dyczkowski, K., et al.: Python library for interval-valued fuzzy inference. SoftwareX 26, 101730 (2024)

    Article  MATH  Google Scholar 

  15. Yang, Q., et al.: Efficient processing of nested fuzzy SQL queries in a fuzzy database. IEEE Trans. Knowl. Data Eng. 13(6), 884–901 (2001)

    Article  MATH  Google Scholar 

  16. Ma, Z.M., Yan, L.: Generalization of strategies for fuzzy query translation in classical relational databases. Inf. Softw. Technol. 49(2), 172–180 (2007)

    Article  MATH  Google Scholar 

  17. Cingolani, P., Alcala-Fdez, J.: jFuzzyLogic: a robust and flexible Fuzzy-Logic inference system language implementation. In: 2012 IEEE International Conference on Fuzzy Systems, pp. 1–8 (2012)

    Google Scholar 

  18. Spolaor, S., et al.: Simpful: a user-friendly Python library for fuzzy logic. Int. J. Comput. Intell. Syst. 13(1), 1687–1698 (2020)

    Article  MATH  Google Scholar 

  19. Julián-Iranzo, P., Moreno, G., Riaza, J.A.: The fuzzy logic programming language FASILL: design and implementation. Int. J. Approximate Reasoning 125, 139–168 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Julián-Iranzo, P., Sáenz-Pérez, F.: Bousi\(\sim \)Prolog: design and implementation of a proximity-based fuzzy logic programming language. Expert Syst. Appl. 213, 118858 (2023)

    Article  MATH  Google Scholar 

  21. Meijer, E., Beckman, B., Bierman, G.: LINQ: reconciling object, relations and XML in the .NET framework. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, p. 706 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Bartczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartczuk, Ł. (2025). Functional Based Fuzzy Logic Query Library. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2024. Lecture Notes in Computer Science(), vol 15166. Springer, Cham. https://doi.org/10.1007/978-3-031-81596-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81596-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81595-9

  • Online ISBN: 978-3-031-81596-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics