Skip to main content

A Large Language Model-Based Motion Planning for Human-Robot Interaction: An Experimental Case Study

  • Conference paper
  • First Online:
Human-Friendly Robotics 2024 (HFR 2024)

Abstract

Human-robot interaction (HRI) is crucial for fostering seamless and effective collaboration between humans and robots, particularly in Industry 4.0 and related fields. This study investigates the integration of large language models (LLMs) to enhance HRI by enabling natural language understanding and efficient task execution planning. We propose a novel approach that leverages LLMs to facilitate seamless communication between users and robotic systems. The system interprets user intentions conveyed in plain text, plans robotic actions, and executes tasks in real-world scenarios. Through an experimental case study, we validate the effectiveness of this approach. The results vividly underscore the transformative potential of LLMs in bridging the gap between natural language commands and robotic actions, thereby significantly advancing applications in industrial automation and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Proia, S., Carli, R., Cavone, G., Dotoli, M.: Control techniques for safe, ergonomic, and efficient human-robot collaboration in the digital industry: a survey. IEEE Trans. Autom. Sci. Eng. 19(3), 1798–1819 (2021)

    Article  MATH  Google Scholar 

  2. Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human-robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics 55, 248–266 (2018)

    Article  Google Scholar 

  3. Wang, C., et al.: LaMI: large language models for multi-modal human-robot interaction. In: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, pp. 1–10 (2024)

    Google Scholar 

  4. Su, H., Qi, W., Chen, J., Yang, C., Sandoval, J., Amine Laribi, M.: Recent advancements in multimodal human–robot interaction. Front. Neurorob. 17, 1084000 (2023)

    Google Scholar 

  5. Chryssolouris, G., Alexopoulos, K., Arkouli, Z.: A Perspective on Artificial Intelligence in Manufacturing, vol. 436. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-21828-6

  6. Zhang, Z., Chai, W., Wang, J.: Mani-GPT: a generative model for interactive robotic manipulation. Procedia Comput. Sci. 226, 149–156 (2023)

    Article  MATH  Google Scholar 

  7. Hicks, M.T., Humphries, J., Slater, J.: ChatGPT is bullshit. Ethics Inf. Technol. 26(2), 38 (2024)

    Google Scholar 

  8. Asai, A., Min, S., Zhong, Z., Chen, D.: Retrieval-based language models and applications. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts), pp. 41–46 (2023)

    Google Scholar 

  9. Ahn, M., et al.: Do as I can, not as I say: grounding language in robotic affordances. arXiv preprint arXiv:2204.01691 (2022)

  10. Gkournelos, C., Konstantinou, C., Makris, S.: An LLM-based approach for enabling seamless human-robot collaboration in assembly. CIRP Ann. (2024)

    Google Scholar 

  11. Han, Y., Liu, C., Wang, P.: A comprehensive survey on vector database: storage and retrieval technique, challenge. arXiv preprint arXiv:2310.11703 (2023)

  12. Tanneberg, D., et al.: To help or not to help: LLM-based attentive support for human-robot group interactions. arXiv preprint arXiv:2403.12533 (2024)

  13. Calanzone, D., Coppari, A., Tedoldi, R., Olivato, G., Casonato, C.: An open source perspective on AI and alignment with the EU AI act (2023)

    Google Scholar 

  14. Mignone, G., Parziale, A., Ferrentino, E., Marcelli, A., Chiacchio, P.: Observation vs. interaction in the recognition of human-like movements. Front. Rob. AI 10 (2023)

    Google Scholar 

  15. Mavridis, N.: A review of verbal and non-verbal human-robot interactive communication. Robot. Auton. Syst. 63, 22–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Horswill, I.: Polly: a vision-based artificial agent. In: AAAI, pp. 824–829 (1993)

    Google Scholar 

  17. Fry, J., Asoh, H., Matsui, T.: Natural dialogue with the Jijo-2 office robot. In: Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No. 98CH36190), vol. 2, pp. 1278–1283. IEEE (1998)

    Google Scholar 

  18. Crangle, C., Suppes, P.: Language and learning for robots. Number 41. Center for the Study of Language (CSLI) (1994)

    Google Scholar 

  19. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language, vol. 626. Cambridge University Press (1969)

    Google Scholar 

  20. Bicho, E., Louro, L., Erlhagen, W.: Integrating verbal and nonverbal communication in a dynamic neural field architecture for human-robot interaction. Front. Neurorobot. 4, 1222 (2010)

    MATH  Google Scholar 

  21. Zhang, B., Soh, H.: Large language models as zero-shot human models for human-robot interaction. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7961–7968. IEEE (2023)

    Google Scholar 

  22. Yoshida, T., Masumori, A., Ikegami, T.: From text to motion: grounding GPT-4 in a humanoid robot" alter3". arXiv preprint arXiv:2312.06571 (2023)

  23. Bärmann, L., Kartmann, R., Peller-Konrad, F., Waibel, A., Asfour, T.: Incremental learning of humanoid robot behavior from natural interaction and large language models. arXiv preprint arXiv:2309.04316 (2023)

  24. OpenAI: Hello GPT-4o, May 2024. https://openai.com/index/hello-gpt-4o/

  25. Huang, X., et al.: Understanding the planning of LLM agents: a survey (2024)

    Google Scholar 

  26. Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks (2021)

    Google Scholar 

  27. Rackauckas, Z.: RAG-Fusion: a new take on retrieval augmented generation. Int. J. Nat. Lang. Comput. 13(1), 37–47 (2024)

    Article  MATH  Google Scholar 

  28. Yang, L., et al.: Buffer of thoughts: thought-augmented reasoning with large language models (2024)

    Google Scholar 

  29. SERMAS-EU. Sermas toolkit. https://sermas-eu.github.io/

  30. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W.: Robot operating system 2: design, architecture, and uses in the wild. Sci. Rob. 7(66), eabm6074 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Socially-acceptable Extended Reality Models and Systems (SERMAS) Project of the European Union’s Horizon Europe Research and Innovation Program (GA n. 101070351).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Coppari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coppari, A. et al. (2025). A Large Language Model-Based Motion Planning for Human-Robot Interaction: An Experimental Case Study. In: Paolillo, A., Giusti, A., Abbate, G. (eds) Human-Friendly Robotics 2024. HFR 2024. Springer Proceedings in Advanced Robotics, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-031-81688-8_8

Download citation

Publish with us

Policies and ethics