Skip to main content

Determining the Complete Weight Distributions of Some Families of Cyclic Codes

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2024)

Abstract

Obtaining the complete weight distributions for nonbinary codes is an even harder problem than obtaining their Hamming weight distributions. In fact, obtaining these distributions is a problem that usually involves the evaluation of sophisticated exponential sums, which leaves this problem open for most of the linear codes. In this work we present a method that uses the known complete weight distribution of a given cyclic code, to determine the complete weight distributions of other cyclic codes. In addition we also obtain the complete weight distributions for a particular kind of one- and two-weight irreducible cyclic codes, and use these distributions and the method, in order to determine the complete weight distributions of infinite families of cyclic codes. As an example, and as a particular instance of our results, we determine in a simple way the complete weight distribution for one of the two families of reducible cyclic codes studied by Bae, Li and Yue [Discrete Mathematics, 338 (2015) 2275-2287].

This manuscript is partially supported by PAPIIT-UNAM IN107423. The second author has also received research support from CONAHCyT, México.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bae, S., Li, C., Yue, Q.: On the complete weight enumerator of some reducible cyclic codes. Discret. Math. 338, 2275–2287 (2015)

    Article  MathSciNet  Google Scholar 

  2. Blake, I.F., Kith, K.: On the complete weight enumerator of Reed-Solomon codes. SIAM J. Discret. Math. 4(2), 164–171 (1991)

    Article  MathSciNet  Google Scholar 

  3. Chan, C.H., Xiong, M.: On the complete weight distribution of subfield subcodes of algebraic-geometric codes. IEEE Trans. Inf. Theory 65(11), 7079–7086 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cheng, Y., Cao, X., Luo, G.: Three new constructions of optimal linear codes with few weights. Comput. Appl. Math. 42(321) (2023)

    Google Scholar 

  5. Delsarte, P.: On subfield subcodes of Reed-Solomon codes. IEEE Trans. Inf. Theory 21(5), 575–576 (1975)

    Article  MathSciNet  Google Scholar 

  6. Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52, 2018–2032 (2006)

    Article  MathSciNet  Google Scholar 

  7. Helleseth, T., Kløve, T., Mykkeltveit, J.: The weight distribution of irreducible cyclic codes with block lengths \(n_1((q^l-1)n)\). Discret. Math. 18(2), 179–211 (1977)

    Article  Google Scholar 

  8. Hilliker, D.L.: On the multinomial theorem. Fibonacci Q. 15(1), 22–24 (1977)

    Article  MathSciNet  Google Scholar 

  9. Kløve, T.: The weight distribution for a class of irreducible cyclic codes. Discret. Math. 20, 87–90 (1977)

    Article  MathSciNet  Google Scholar 

  10. Li, C., Bae, S., Ahn, J., Yang, S., Yao, Z.A.: Complete weight enumerators of some linear codes and their applications. Designs Codes Cryptogr. 81, 153–168 (2016)

    Article  MathSciNet  Google Scholar 

  11. Li, C., Yue, Q., Fu, F.W.: Complete weight enumerators of some cyclic codes. Designs Codes Cryptogr. 80, 295–315 (2015)

    Article  MathSciNet  Google Scholar 

  12. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  13. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    Google Scholar 

  14. Vega, G.: The \(b\)-symbol weight distributions of all semiprimitive irreducible cyclic codes. Des. Codes Cryptogr. 91, 2213–2221 (2023)

    Article  MathSciNet  Google Scholar 

  15. Vega, G., Hernández, F.: The complete weight distribution of a subclass of optimal three-weight cyclic codes. Cryptogr. Commun. 15(2), 317–330 (2023)

    Article  MathSciNet  Google Scholar 

  16. Yang, S.: Complete weight enumerators of a class of linear codes from weil sums. IEEE Access 8, 194631–194639 (2020)

    Article  Google Scholar 

  17. Yang, S., Yao, Z.: Complete weight enumerators of a family of three-weight linear codes. Des. Codes Cryptogr. 82, 663–674 (2017)

    Article  MathSciNet  Google Scholar 

  18. Yang, S., Yao, Z.A.: Complete weight enumerators of a class of linear codes. Discret. Math. 340(4), 729–739 (2017)

    Article  MathSciNet  Google Scholar 

  19. Yang, S., Yao, Z.A., Zhao, C.A.: A class of three-weight linear codes and their complete weight enumerators. Cryptogr. Commun. 9, 133–149 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vega, G., Hernández, F. (2025). Determining the Complete Weight Distributions of Some Families of Cyclic Codes. In: Petkova-Nikova, S., Panario, D. (eds) Arithmetic of Finite Fields. WAIFI 2024. Lecture Notes in Computer Science, vol 15176. Springer, Cham. https://doi.org/10.1007/978-3-031-81824-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81824-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81823-3

  • Online ISBN: 978-3-031-81824-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics