Abstract
This paper explores the convergence of Open Data initiatives, Linked Data technologies, ontological knowledge representation, and Large Language Models (LLMs) in generative Artificial Intelligence (AI). It examines how these complementary approaches can be integrated to create more powerful, flexible, and context-aware knowledge systems. The paper provides an overview of the open data landscape, the Semantic Web and Linked Data vision, ontologies and knowledge organization systems, and recent advances in LLMs. It then discusses how these technologies can be synergistically combined to enable next-generation knowledge systems that leverage both structured knowledge and natural language understanding. Potential applications in areas such as scientific research, government transparency, and intelligent information retrieval are discussed. The paper also addresses key challenges including scalability, data quality, ethical considerations, and the need for explainable AI. A strategic roadmap for realizing this integration is proposed, emphasizing collaboration between academia, industry, and government. While significant technical and ethical challenges remain, the convergence of these technologies has the potential to fundamentally transform how we interact with and derive insights from information, enabling more intelligent and context-aware knowledge systems to address complex real-world problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Terzic, R., Majstorovic, M.: Open data concept its application and experiences (2019). https://doi.org/10.5937/vojtehg67-19935
https://www.gov.uk/government/publications/open-data-charter/g8-open-datacharter-and-technical-annex
Young, A., Verhulst, S.: The Global Impact of Open Data. O’Reilly Media, Inc. (2016)
Lange, R., Tian, Y., Tang, Y.: Large language models as evolution strategies (2024)
Liu, T., Xu, C., Qiao, Y., Jiang, C., Chen, W.: News recommendation with attention mechanism. arXiv preprint arXiv:2402.07422 (2024)
Ranaldi, F., et al.: Investigating the impact of data contamination of large language models in text-to-SQL translation. arXiv preprint arXiv:2402.08100 (2024)
Sjöström, J., Cronholm, S.: Meta-requirements for LLM-based knowledge exploration tools in information systems research. Springer (2024)
Chang, Y., et al.: A survey on evaluation of large language models. arXiv preprint arxiv:2307.03109 (2023)
Charalabidis, Y., Zuiderwijk, A., Alexopoulos, C., Janssen, M., Lampoltshammer, T.J., Ferro, E.: The open data landscape: concepts, methods, tools and experiences. In: The World of Open Data (2018)
Machado, L.M.O.: Ontologies in Knowledge Organization. MDPI (2021)
Samani, Z.R., Shamsfard, M.: The state of the art in developing fuzzy ontologies: a survey. arXiv preprint arXiv:1805.02290 (2018)
Hadi, M.U., et al.: Large language models: a comprehensive survey of its applications, challenges, limitations, and future prospects. TechRxiv (2023)
Jiang, D., et al.: GenAI arena: an open evaluation platform for generative models arXiv preprint arXiv:2406.04485 (2024)
Doumanas, D., Soularidis, A., Kotis, K., Vouros, G.: Integrating LLMs in the Engineering of a SAR Ontology. Springer (2024)
Nahhas, S., Bamasag, O., Khemakhem, M., Bajnaid, N.: Linked data approach to mutually enrich traditional education resources with global open education. IEEE (2018)
Buchmann, R., et al.: Large language models: expectations for semantics-driven systems engineering. Data Knowl. Eng. 152, 102324 (2024)
Boparai, N.K., Aggarwal, H., Rani, R.: Analyzing fuzzy semantics of reviews for multi-criteria recommendations. Data Knowl. Eng. 152, 102314 (2024)
Karagiannis, D., Buchmann, R.A.: Linked open models: extending linked open data with conceptual model information. Inf. Syst. 56, 174–197 (2016)
Shen, L., et al.: The language barrier: dissecting safety challenges of LLMs in multilingual contexts. arXiv preprint arXiv:2401.13136 (2024)
Babaei Giglou, H., D’Souza, J., Auer, S.: LLMs4OL: large language models for ontology learning. Springer (2023)
Zhai, C.X.: Large language models and future of information retrieval: opportunities and challenges. ACM (2024)
Iga, V.I.R., Silaghi, G.C.: LLMS for knowledge-graphs enhanced task-oriented dialogue systems: challenges and opportunities. Springer (2024)
Patil, R., Gudivada, V.: A Review of Current Trends, Techniques, and Challenges in Large Language Models (LLMs). MDPI (2024)
Pesl, R.D., Stötzner, M., Georgievski, I., Aiello, M.: Uncovering LLMs for service-composition: challenges and opportunities. Springer (2024)
Ding, B., et al.: Data augmentation using large language models: data perspectives, learning paradigms and challenges. arXiv preprint arXiv:2403.02990 (2024)
Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochastic parrots: can language models be too big?. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623. ACM (2021)
Bostrom, N., Yudkowsky, E.: The ethics of artificial intelligence. In: Frankish, K., Ramsey, W.M. (eds.) The Cambridge Handbook of Artificial Intelligence, pp. 316–334. Cambridge University Press, Cambridge (2014)
Liang, Z., et al.: Unleashing the potential of LLMs for quantum computing: a study in quantum architecture design. arXiv preprint arXiv:2307.08191 (2023)
Liao, Y., Ferrie, C.: GPT on a quantum computer. arXiv preprint arXiv:2403.09418 (2024)
Hohenecker, P, Lukasiewicz, T.: Ontology reasoning with deep neural networks (2020). https://doi.org/10.1613/jair.1.11661
Herron, D., Jiménez-Ruiz, E. , Weyde, T.: On the potential of logic and reasoning in neurosymbolic systems using OWL-based knowledge graphs (2024). https://openaccess.city.ac.uk/id/eprint/32688/
Rubiolo, M., Caliusco, M.L., Stegmayer, G., Coronel, M., Gareli Fabrizi, M.: Knowledge discovery through ontology matching: an approach based on an artificial neural network model. Inf. Sci. 194, 107–119 (2012)
Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE (2011)
Pascala, H., Federicob, B., Monireha, E., Kamruzzamana, S.M.: Neural-symbolic integration and the semantic web. Semantic Web 11(1), 3–11 (2020)
Adegun, A.A, Fonou-Dombeu, J.V., Viriri, S., Odindi, J.: Ontology-Based Deep Learning Model for Object Detection and Image Classification in Smart City Concepts. MDPI (2024)
Bang, D., Lim, S., Lee, S., Kim, S.: Biomedical knowledge graph learning for drug repurposing by extending guilt-by association to multiple layers. Nat. Commun. (2023). https://www.nature.com/articles/s41467-023-39301-y
Puiu, D., et al.: CityPulse: large scale data analytics framework for smart cities. IEEE Access 4, 1086–1108 (2016). https://doi.org/10.1109/ACCESS.2016.2541999
Halpern, B.S., et al.: Priorities for synthesis research in ecology and environmental science. Ecosphere 14(1), e4342 (2023). https://doi.org/10.1002/ecs2.4342
Brozek, B.: The Legal Mind: A New Introduction to Legal Epistemology. Cambridge University Press (2019)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cigliano, A., Fallucchi, F. (2025). The Convergence of Open Data, Linked Data, Ontologies, and Large Language Models: Enabling Next-Generation Knowledge Systems. In: Sfakakis, M., Garoufallou, E., Damigos, M., Salaba, A., Papatheodorou, C. (eds) Metadata and Semantic Research. MTSR 2024. Communications in Computer and Information Science, vol 2331. Springer, Cham. https://doi.org/10.1007/978-3-031-81974-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-81974-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-81973-5
Online ISBN: 978-3-031-81974-2
eBook Packages: Computer ScienceComputer Science (R0)