Skip to main content

Towards a Knowledge Graph for Models and Algorithms in Applied Mathematics

  • Conference paper
  • First Online:
Metadata and Semantic Research (MTSR 2024)

Abstract

Mathematical models and algorithms are an essential part of mathematical research data, as they are epistemically grounding numerical data. To make this research data FAIR, we present how two previously distinct ontologies, MathAlgoDB for algorithms and MathModDB for models, were merged and extended into a living knowledge graph as the key outcome. This was achieved by connecting the ontologies through computational tasks that correspond to algorithmic tasks. Moreover, we show how models and algorithms can be enriched with subject-specific metadata, such as matrix symmetry or model linearity, essential for defining workflows and determining suitable algorithms. Additionally, we propose controlled vocabularies to be added, along with a new class that differentiates base quantities from specific use case quantities. We illustrate the capabilities of the developed knowledge graph using two detailed examples from different application areas of applied mathematics, having already integrated over 250 research assets into the knowledge graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.wikidata.org/wiki/Q2465832.

  2. 2.

    https://orkg.org/fields.

  3. 3.

    https://qudt.org/vocab/quantitykind/Voltage.

  4. 4.

    https://www.wikidata.org/wiki/Q25428.

  5. 5.

    https://portal.mardi4nfdi.de/wiki/Portal.

References

  1. The DFG subject area structure. https://www.dfg.de/en/research-funding/proposal-funding-process/interdisciplinarity/subject-area-structure

  2. Arndt, S., et al.: Metadata4ing: an ontology for describing the generation of research data within a scientific activity (2023). https://doi.org/10.5281/zenodo.5957104

  3. Auer, S., Kovtun, V., Prinz, M., Kasprzik, A., Stocker, M., Vidal, M.E.: Towards a knowledge graph for science. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, pp. 1–6 (2018). https://doi.org/10.1145/3227609.3227689

  4. Baker, M.: 1,500 scientists lift the lid on reproducibility. Nature 533(7604), 452–454 (2016). https://doi.org/10.1038/533452a

    Article  MATH  Google Scholar 

  5. Behr, A.S., Borgelt, H., Kockmann, N.: Ontologies4Cat: investigating the landscape of ontologies for catalysis research data management. J. Cheminform. 16(1), 16 (2024). https://doi.org/10.1186/s13321-024-00807-2

    Article  MATH  Google Scholar 

  6. Behr, A.S., Völkenrath, M., Kockmann, N.: Ontology extension with NLP-based concept extraction for domain experts in catalytic sciences. Knowl. Inf. Syst. 65(12), 5503–5522 (2023)

    Article  MATH  Google Scholar 

  7. Berners-Lee, T.: Linked data (2007). https://www.w3.org/DesignIssues/LinkedData.html

  8. Boege, T., et al.: Data management planning in the German mathematical community. Eur. Math. Soc. Mag. 130, 40–47 (2023). https://doi.org/10.4171/mag/152

    Article  MATH  Google Scholar 

  9. Chelliah, V., Laibe, C., Le Novère, N.: Biomodels database: a repository of mathematical models of biological processes. In: Silico Systems Biology pp. 189–199 (2013). https://doi.org/10.1007/978-1-62703-450-0_10

  10. Conrad, T.O., Ferrer, E., Mietchen, D., Pusch, L., Stegmüller, J., Schubotz, M.: Making mathematical research data FAIR: pathways to improved data sharing. Sci. Data 11(1), 676 (2024). https://doi.org/10.1038/s41597-024-03480-0

    Article  Google Scholar 

  11. Dutta, B., Patel, J.: Algorithm metadata vocabulary: a representational model and metadata vocabulary for describing and maintaining algorithms. J. Inf. Sci. (2022). https://doi.org/10.1177/01655515221116557

    Article  MATH  Google Scholar 

  12. Dyvak, M., Melnyk, A., Rot, A., Hernes, M., Pukas, A.: Ontology of mathematical modeling based on interval data. Complexity 2022, 1–19 (2022). https://doi.org/10.1155/2022/8062969

    Article  Google Scholar 

  13. Elizarov, A., Kirillovich, A., Lipachev, E., Nevzorova, O.: Digital ecosystem OntoMath: mathematical knowledge analytics and management. In: Kalinichenko, L., Kuznetsov, S.O., Manolopoulos, Y. (eds.) DAMDID/RCDL 2016. CCIS, vol. 706, pp. 33–46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57135-5_3

    Chapter  MATH  Google Scholar 

  14. Engelhardt, C., Enke, H., Klar, J., Ludwig, J., Neuroth, H.: Research data management organiser. In: Proceedings of the 14th International Conference on Digital Preservation, pp. 25–29 (2017)

    Google Scholar 

  15. Enke, H., Hausen, D., Henzen, C., Jagusch, G., Krause, C., Schönau, S., et al.: Data management planning: concept for setting up a working group in the NFDI section common infrastructures. Zenodo (2023). https://doi.org/10.5281/zenodo.7540682

    Article  Google Scholar 

  16. Esteves, D., et al.: Mex vocabulary: A lightweight interchange format for machine learning experiments, vol. 10, no. 1145/2814864, pp. 2814883 (2015)

    Google Scholar 

  17. Foster, M.P.: Quantities, units and computing. Comput. Stand. Interfaces 35(5), 529–535 (2013). https://doi.org/10.1016/j.csi.2013.02.001, https://www.sciencedirect.com/science/article/pii/S0920548913000160

  18. Harish, A.: When NASA lost a spacecraft due to a metric math mistake. https://www.simscale.com/blog/nasa-mars-climate-orbiter-metric/

  19. Hartl, N., Wössner, E., Sure-Vetter, Y.: Nationale forschungsdateninfrastruktur (nfdi). Informatik Spektrum 44(5), 370–373 (2021). https://doi.org/10.1007/s00287-021-01392-6

    Article  Google Scholar 

  20. Hey, T.: The fourth paradigm - data-intensive scientific discovery. In: Kurbanoğlu, S., Al, U., Erdoğan, P.L., Tonta, Y., Uçak, N. (eds.) E-Science and Information Management, pp. 1–1. Springer, Berlin Heidelberg, Berlin, Heidelberg (2012)

    MATH  Google Scholar 

  21. Inizan, O., Fromion, V., Goelzer, A., Saïs, F., Symeonidou, D.: An ontology to structure biological data: the contribution of mathematical models. In: Research Conference on Metadata and Semantics Research, pp. 57–64. Springer (2021). https://doi.org/10.1007/978-3-030-98876-0_5

  22. Keil, J.M., Schindler, S.: Comparison and evaluation of ontologies for units of measurement. Semant. Web 10(1), 33–51 (2019). https://doi.org/10.3233/SW-180310

    Article  MATH  Google Scholar 

  23. Kirillovich, A., Falileeva, M., Nevzorova, O., Lipachev, E., Dyupina, A., Shakirova, L.: Prerequisite relationships of the ontomathedu educational mathematical ontology. In: Figueroa-García, J.C., Díaz-Gutierrez, Y., Gaona-García, E.E., Orjuela-Cañón, A.D. (eds.) Applied Computer Sciences in Engineering, pp. 517–524. Springer International Publishing (2021). https://doi.org/10.1007/978-3-030-86702-7_44

  24. Kirillovich, A., Nevzorova, O., Falileeva, M., Lipachev, E., Shakirova, L.: Ontomathedu: a linguistically grounded educational mathematical ontology. In: Benzmüller, C., Miller, B. (eds.) Intelligent Computer Mathematics, pp. 157–172. Springer International Publishing, Cham (2020)

    Chapter  MATH  Google Scholar 

  25. Kohlhase, M.: OMDoc – An open markup format for mathematical documents [Version 1.2], LNAI, vol. 4180. Springer Verlag (2006). https://doi.org/10.1007/11826095

  26. Koprucki, T., Kohlhase, M., Tabelow, K., Müller, D., Rabe, F.: Model pathway diagrams for the representation of mathematical models. Opt. Quant. Electron. 50(2), 1–9 (2018). https://doi.org/10.1007/s11082-018-1321-7

    Article  MATH  Google Scholar 

  27. Kostré, M., Sunkara, V., Schütte, C., Conrad, N.D.: Understanding the romanization spreading on historical interregional networks in northern Tunisia. Appl. Netw. Sci. 7(53) (2022).https://doi.org/10.1007/s41109-022-00492-w

  28. Lange, C., et al.: Bringing mathematics to the web of data: the case of the mathematics subject classification. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 763–777. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_58

    Chapter  MATH  Google Scholar 

  29. Musen, M.A.: The protégé project: a look back and a look forward. AI matters 1(4), 4–12 (2015). https://doi.org/10.1145/2757001.2757003

  30. Nguyen, A., Weller, T., Färber, M., Sure-Vetter, Y.: Making neural networks FAIR (2020). https://arxiv.org/abs/1907.11569

  31. Reidelbach, M., Ferrer, E., Weber, M.: MaRDMO plugin - document and retrieve workflows using the MaRDI Portal. In: Proceedings of the 1st Conference on Research Data Infrastructure (CoRDI) - Connecting Communities (2023). https://doi.org/10.52825/cordi.v1i.254

  32. Reidelbach, M., Schembera, B., Weber, M.: Towards a fair documentation of workflows and models in applied mathematics. In: Buzzard, K., Dickenstein, A., Eick, B., Leykin, A., Ren, Y. (eds.) Mathematical Software – ICMS 2024, pp. 254–262. Springer Nature Switzerland (2024). https://doi.org/10.1007/978-3-031-64529-7_27

  33. Riedel, C., Geßner, H., Seegebrecht, A., Ayon, S.I., Chowdhury, S.H., Engbert, R., Lucke, U.: Including data management in research culture increases the reproducibility of scientific results. INFORMATIK 2022 (2022). https://doi.org/10.18420/inf2022_114

  34. Sack, H., et al.: Knowledge graph based RDM solutions. In: Proceedings of the 1st Conference on Research Data Infrastructure (CoRDI) - Connecting Communities (2023). https://doi.org/10.52825/cordi.v1i.371

  35. Schembera, B., Durán, J.M.: Dark data as the new challenge for big data science and the introduction of the scientific data officer. Philos. Technol. 33, 93–115 (2020). https://doi.org/10.1007/s13347-019-00346-x

  36. Schembera, B., et al.: Ontologies for models and algorithms in applied mathematics and related disciplines. In: Garoufallou, E., Sartori, F. (eds.) Communications in Computer and Information Science, pp. 161–168. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-031-65990-4_14

  37. Schembera, B., et al.: Building ontologies and knowledge graphs for mathematics and its applications. In: Proceedings of the 1st Conference on Research Data Infrastructure (CoRDI) - Connecting Communities (2023). https://doi.org/10.52825/cordi.v1i.255

  38. Smith, A.: Physics subject headings (PhySH). Knowl. Organ. 47(3), 257–266 (2020). https://doi.org/10.5771/0943-7444-2020-3-257

    Article  Google Scholar 

  39. Snytnikov, A., Glinskiy, B., Zagorulko, G., Zagorulko, Y.: Ontological approach to formalization of knowledge in computational plasma physics. J. Phys: Conf. Ser. 1640, 012013 (2020). https://doi.org/10.1088/1742-6596/1640/1/012013

    Article  MATH  Google Scholar 

  40. Suresh, P., Hsu, S.H., Akkisetty, P., Reklaitis, G.V., Venkatasubramanian, V.: OntoMODEL: ontological mathematical modeling knowledge management in pharmaceutical product development, 1: conceptual framework. Ind. Eng. Chem. Res. 49(17), 7758–7767 (2010). https://doi.org/10.1021/ie100246w

    Article  Google Scholar 

  41. Suresh, P., Joglekar, G., Hsu, S., Akkisetty, P., Hailemariam, L., Jain, A., Reklaitis, G., Venkatasubramanian, V.: Onto MODEL: Ontological mathematical modeling knowledge management. In: Computer Aided Chemical Engineering, vol. 25, pp. 985–990. Elsevier (2008). https://doi.org/10.1016/S1570-7946(08)80170-8

  42. The MaRDI consortium: MaRDI: Mathematical Research Data Initiative Proposal (2022). https://doi.org/10.5281/zenodo.6552436

  43. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3(1), 1–9 (2016). https://doi.org/10.1038/sdata.2016.18

    Article  MATH  Google Scholar 

  44. Zang, Z., Ma, T.: Research and Application of Mathematical Knowledge Graph Based on Ontology Learning. In: Liu, Q., Liu, X., Cheng, J., Shen, T., Tian, Y. (eds.) Proceedings of the 12th International Conference on Computer Engineering and Networks. pp, 1387–1394. Springer Nature, Singapore (2022). https://doi.org/10.1007/978-981-19-6901-0_147

  45. Zwaneveld, B.: Structuring mathematical knowledge and skills by means of knowledge graphs. Int. J. Math. Educ. Sci. Technol. 31(3), 393–414 (2000). https://doi.org/10.1080/002073900287165

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The co-authors C.B., J.F., M.R., A.S., B.S., B.S. acknowledge funding by MaRDI, funded by the DFG (German Research Foundation), project number 460135501, NFDI 29/1 “MaRDI - Mathematische Forschungsdateninitiative”. The co-authors H.K. and F.W. acknowledge funding by the DFG under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics- Geometry- Structure.The co-author D.G. acknowledges funding by the DFG under Germany’s Excellence Strategy EXC 2075: Data-Integrated Simulation Science (SimTech), project number 390740016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Schembera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schembera, B. et al. (2025). Towards a Knowledge Graph for Models and Algorithms in Applied Mathematics. In: Sfakakis, M., Garoufallou, E., Damigos, M., Salaba, A., Papatheodorou, C. (eds) Metadata and Semantic Research. MTSR 2024. Communications in Computer and Information Science, vol 2331. Springer, Cham. https://doi.org/10.1007/978-3-031-81974-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81974-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81973-5

  • Online ISBN: 978-3-031-81974-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics