Abstract
Mathematical models and algorithms are an essential part of mathematical research data, as they are epistemically grounding numerical data. To make this research data FAIR, we present how two previously distinct ontologies, MathAlgoDB for algorithms and MathModDB for models, were merged and extended into a living knowledge graph as the key outcome. This was achieved by connecting the ontologies through computational tasks that correspond to algorithmic tasks. Moreover, we show how models and algorithms can be enriched with subject-specific metadata, such as matrix symmetry or model linearity, essential for defining workflows and determining suitable algorithms. Additionally, we propose controlled vocabularies to be added, along with a new class that differentiates base quantities from specific use case quantities. We illustrate the capabilities of the developed knowledge graph using two detailed examples from different application areas of applied mathematics, having already integrated over 250 research assets into the knowledge graph.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
The DFG subject area structure. https://www.dfg.de/en/research-funding/proposal-funding-process/interdisciplinarity/subject-area-structure
Arndt, S., et al.: Metadata4ing: an ontology for describing the generation of research data within a scientific activity (2023). https://doi.org/10.5281/zenodo.5957104
Auer, S., Kovtun, V., Prinz, M., Kasprzik, A., Stocker, M., Vidal, M.E.: Towards a knowledge graph for science. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, pp. 1–6 (2018). https://doi.org/10.1145/3227609.3227689
Baker, M.: 1,500 scientists lift the lid on reproducibility. Nature 533(7604), 452–454 (2016). https://doi.org/10.1038/533452a
Behr, A.S., Borgelt, H., Kockmann, N.: Ontologies4Cat: investigating the landscape of ontologies for catalysis research data management. J. Cheminform. 16(1), 16 (2024). https://doi.org/10.1186/s13321-024-00807-2
Behr, A.S., Völkenrath, M., Kockmann, N.: Ontology extension with NLP-based concept extraction for domain experts in catalytic sciences. Knowl. Inf. Syst. 65(12), 5503–5522 (2023)
Berners-Lee, T.: Linked data (2007). https://www.w3.org/DesignIssues/LinkedData.html
Boege, T., et al.: Data management planning in the German mathematical community. Eur. Math. Soc. Mag. 130, 40–47 (2023). https://doi.org/10.4171/mag/152
Chelliah, V., Laibe, C., Le Novère, N.: Biomodels database: a repository of mathematical models of biological processes. In: Silico Systems Biology pp. 189–199 (2013). https://doi.org/10.1007/978-1-62703-450-0_10
Conrad, T.O., Ferrer, E., Mietchen, D., Pusch, L., Stegmüller, J., Schubotz, M.: Making mathematical research data FAIR: pathways to improved data sharing. Sci. Data 11(1), 676 (2024). https://doi.org/10.1038/s41597-024-03480-0
Dutta, B., Patel, J.: Algorithm metadata vocabulary: a representational model and metadata vocabulary for describing and maintaining algorithms. J. Inf. Sci. (2022). https://doi.org/10.1177/01655515221116557
Dyvak, M., Melnyk, A., Rot, A., Hernes, M., Pukas, A.: Ontology of mathematical modeling based on interval data. Complexity 2022, 1–19 (2022). https://doi.org/10.1155/2022/8062969
Elizarov, A., Kirillovich, A., Lipachev, E., Nevzorova, O.: Digital ecosystem OntoMath: mathematical knowledge analytics and management. In: Kalinichenko, L., Kuznetsov, S.O., Manolopoulos, Y. (eds.) DAMDID/RCDL 2016. CCIS, vol. 706, pp. 33–46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57135-5_3
Engelhardt, C., Enke, H., Klar, J., Ludwig, J., Neuroth, H.: Research data management organiser. In: Proceedings of the 14th International Conference on Digital Preservation, pp. 25–29 (2017)
Enke, H., Hausen, D., Henzen, C., Jagusch, G., Krause, C., Schönau, S., et al.: Data management planning: concept for setting up a working group in the NFDI section common infrastructures. Zenodo (2023). https://doi.org/10.5281/zenodo.7540682
Esteves, D., et al.: Mex vocabulary: A lightweight interchange format for machine learning experiments, vol. 10, no. 1145/2814864, pp. 2814883 (2015)
Foster, M.P.: Quantities, units and computing. Comput. Stand. Interfaces 35(5), 529–535 (2013). https://doi.org/10.1016/j.csi.2013.02.001, https://www.sciencedirect.com/science/article/pii/S0920548913000160
Harish, A.: When NASA lost a spacecraft due to a metric math mistake. https://www.simscale.com/blog/nasa-mars-climate-orbiter-metric/
Hartl, N., Wössner, E., Sure-Vetter, Y.: Nationale forschungsdateninfrastruktur (nfdi). Informatik Spektrum 44(5), 370–373 (2021). https://doi.org/10.1007/s00287-021-01392-6
Hey, T.: The fourth paradigm - data-intensive scientific discovery. In: Kurbanoğlu, S., Al, U., Erdoğan, P.L., Tonta, Y., Uçak, N. (eds.) E-Science and Information Management, pp. 1–1. Springer, Berlin Heidelberg, Berlin, Heidelberg (2012)
Inizan, O., Fromion, V., Goelzer, A., Saïs, F., Symeonidou, D.: An ontology to structure biological data: the contribution of mathematical models. In: Research Conference on Metadata and Semantics Research, pp. 57–64. Springer (2021). https://doi.org/10.1007/978-3-030-98876-0_5
Keil, J.M., Schindler, S.: Comparison and evaluation of ontologies for units of measurement. Semant. Web 10(1), 33–51 (2019). https://doi.org/10.3233/SW-180310
Kirillovich, A., Falileeva, M., Nevzorova, O., Lipachev, E., Dyupina, A., Shakirova, L.: Prerequisite relationships of the ontomathedu educational mathematical ontology. In: Figueroa-García, J.C., Díaz-Gutierrez, Y., Gaona-García, E.E., Orjuela-Cañón, A.D. (eds.) Applied Computer Sciences in Engineering, pp. 517–524. Springer International Publishing (2021). https://doi.org/10.1007/978-3-030-86702-7_44
Kirillovich, A., Nevzorova, O., Falileeva, M., Lipachev, E., Shakirova, L.: Ontomathedu: a linguistically grounded educational mathematical ontology. In: Benzmüller, C., Miller, B. (eds.) Intelligent Computer Mathematics, pp. 157–172. Springer International Publishing, Cham (2020)
Kohlhase, M.: OMDoc – An open markup format for mathematical documents [Version 1.2], LNAI, vol. 4180. Springer Verlag (2006). https://doi.org/10.1007/11826095
Koprucki, T., Kohlhase, M., Tabelow, K., Müller, D., Rabe, F.: Model pathway diagrams for the representation of mathematical models. Opt. Quant. Electron. 50(2), 1–9 (2018). https://doi.org/10.1007/s11082-018-1321-7
Kostré, M., Sunkara, V., Schütte, C., Conrad, N.D.: Understanding the romanization spreading on historical interregional networks in northern Tunisia. Appl. Netw. Sci. 7(53) (2022).https://doi.org/10.1007/s41109-022-00492-w
Lange, C., et al.: Bringing mathematics to the web of data: the case of the mathematics subject classification. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 763–777. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_58
Musen, M.A.: The protégé project: a look back and a look forward. AI matters 1(4), 4–12 (2015). https://doi.org/10.1145/2757001.2757003
Nguyen, A., Weller, T., Färber, M., Sure-Vetter, Y.: Making neural networks FAIR (2020). https://arxiv.org/abs/1907.11569
Reidelbach, M., Ferrer, E., Weber, M.: MaRDMO plugin - document and retrieve workflows using the MaRDI Portal. In: Proceedings of the 1st Conference on Research Data Infrastructure (CoRDI) - Connecting Communities (2023). https://doi.org/10.52825/cordi.v1i.254
Reidelbach, M., Schembera, B., Weber, M.: Towards a fair documentation of workflows and models in applied mathematics. In: Buzzard, K., Dickenstein, A., Eick, B., Leykin, A., Ren, Y. (eds.) Mathematical Software – ICMS 2024, pp. 254–262. Springer Nature Switzerland (2024). https://doi.org/10.1007/978-3-031-64529-7_27
Riedel, C., Geßner, H., Seegebrecht, A., Ayon, S.I., Chowdhury, S.H., Engbert, R., Lucke, U.: Including data management in research culture increases the reproducibility of scientific results. INFORMATIK 2022 (2022). https://doi.org/10.18420/inf2022_114
Sack, H., et al.: Knowledge graph based RDM solutions. In: Proceedings of the 1st Conference on Research Data Infrastructure (CoRDI) - Connecting Communities (2023). https://doi.org/10.52825/cordi.v1i.371
Schembera, B., Durán, J.M.: Dark data as the new challenge for big data science and the introduction of the scientific data officer. Philos. Technol. 33, 93–115 (2020). https://doi.org/10.1007/s13347-019-00346-x
Schembera, B., et al.: Ontologies for models and algorithms in applied mathematics and related disciplines. In: Garoufallou, E., Sartori, F. (eds.) Communications in Computer and Information Science, pp. 161–168. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-031-65990-4_14
Schembera, B., et al.: Building ontologies and knowledge graphs for mathematics and its applications. In: Proceedings of the 1st Conference on Research Data Infrastructure (CoRDI) - Connecting Communities (2023). https://doi.org/10.52825/cordi.v1i.255
Smith, A.: Physics subject headings (PhySH). Knowl. Organ. 47(3), 257–266 (2020). https://doi.org/10.5771/0943-7444-2020-3-257
Snytnikov, A., Glinskiy, B., Zagorulko, G., Zagorulko, Y.: Ontological approach to formalization of knowledge in computational plasma physics. J. Phys: Conf. Ser. 1640, 012013 (2020). https://doi.org/10.1088/1742-6596/1640/1/012013
Suresh, P., Hsu, S.H., Akkisetty, P., Reklaitis, G.V., Venkatasubramanian, V.: OntoMODEL: ontological mathematical modeling knowledge management in pharmaceutical product development, 1: conceptual framework. Ind. Eng. Chem. Res. 49(17), 7758–7767 (2010). https://doi.org/10.1021/ie100246w
Suresh, P., Joglekar, G., Hsu, S., Akkisetty, P., Hailemariam, L., Jain, A., Reklaitis, G., Venkatasubramanian, V.: Onto MODEL: Ontological mathematical modeling knowledge management. In: Computer Aided Chemical Engineering, vol. 25, pp. 985–990. Elsevier (2008). https://doi.org/10.1016/S1570-7946(08)80170-8
The MaRDI consortium: MaRDI: Mathematical Research Data Initiative Proposal (2022). https://doi.org/10.5281/zenodo.6552436
Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3(1), 1–9 (2016). https://doi.org/10.1038/sdata.2016.18
Zang, Z., Ma, T.: Research and Application of Mathematical Knowledge Graph Based on Ontology Learning. In: Liu, Q., Liu, X., Cheng, J., Shen, T., Tian, Y. (eds.) Proceedings of the 12th International Conference on Computer Engineering and Networks. pp, 1387–1394. Springer Nature, Singapore (2022). https://doi.org/10.1007/978-981-19-6901-0_147
Zwaneveld, B.: Structuring mathematical knowledge and skills by means of knowledge graphs. Int. J. Math. Educ. Sci. Technol. 31(3), 393–414 (2000). https://doi.org/10.1080/002073900287165
Acknowledgments
The co-authors C.B., J.F., M.R., A.S., B.S., B.S. acknowledge funding by MaRDI, funded by the DFG (German Research Foundation), project number 460135501, NFDI 29/1 “MaRDI - Mathematische Forschungsdateninitiative”. The co-authors H.K. and F.W. acknowledge funding by the DFG under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics- Geometry- Structure.The co-author D.G. acknowledges funding by the DFG under Germany’s Excellence Strategy EXC 2075: Data-Integrated Simulation Science (SimTech), project number 390740016.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Schembera, B. et al. (2025). Towards a Knowledge Graph for Models and Algorithms in Applied Mathematics. In: Sfakakis, M., Garoufallou, E., Damigos, M., Salaba, A., Papatheodorou, C. (eds) Metadata and Semantic Research. MTSR 2024. Communications in Computer and Information Science, vol 2331. Springer, Cham. https://doi.org/10.1007/978-3-031-81974-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-81974-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-81973-5
Online ISBN: 978-3-031-81974-2
eBook Packages: Computer ScienceComputer Science (R0)