Skip to main content

Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics

  • Conference paper
  • First Online:
Applications of Medical Artificial Intelligence (AMAI 2024)

Abstract

Imaging features of knee articular cartilage have been shown to be potential imaging biomarkers for knee osteoarthritis. Despite recent methodological advancements in image analysis techniques like image segmentation, registration, and domain-specific image computing algorithms, only a few works focus on building fully automated pipelines for imaging feature extraction. In this study, we developed a deep-learning-based medical image analysis application for knee cartilage morphometrics, CartiMorph Toolbox (CMT). We proposed a 2-stage joint template learning and registration network, CMT-reg. We trained the model using the OAI-ZIB dataset and assessed its performance in template-to-image registration. The CMT-reg demonstrated competitive results compared to other state-of-the-art models. We integrated the proposed model into an automated pipeline for the quantification of cartilage shape and lesion (full-thickness cartilage loss, specifically). The toolbox provides a comprehensive, user-friendly solution for medical image analysis and data visualization. The software and models are available at https://github.com/YongchengYAO/CMT-AMAI24paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/YongchengYAO/CMT-AMAI24paper.

  2. 2.

    Data from https://github.com/YongchengYAO/CartiMorph.

References

  1. Ambellan, F., Tack, A., Ehlke, M., Zachow, S.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med. Image Anal. 52, 109–118 (2019). https://doi.org/10.1016/j.media.2018.11.009

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019). https://doi.org/10.1109/TMI.2019.2897538

    Article  Google Scholar 

  3. Ding, Z., Niethammer, M.: Aladdin: joint atlas building and diffeomorphic registration learning with pairwise alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20784–20793 (2022)

    Google Scholar 

  4. Dório, M., et al.: Association of baseline and change in tibial and femoral cartilage thickness and development of widespread full-thickness cartilage loss in knee osteoarthritis - data from the osteoarthritis initiative. Osteoarthritis Cartilage 28(6), 811–818 (2020). https://doi.org/10.1016/j.joca.2020.03.011

    Article  Google Scholar 

  5. Favre, J., Erhart-Hledik, J.C., Blazek, K., Fasel, B., Gold, G.E., Andriacchi, T.P.: Anatomically standardized maps reveal distinct patterns of cartilage thickness with increasing severity of medial compartment knee osteoarthritis. J. Orthop. Res. 35(11), 2442–2451 (2017). https://doi.org/10.1002/jor.23548

    Article  Google Scholar 

  6. Gaj, S., Yang, M., Nakamura, K., Li, X.: Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn. Reson. Med. 84(1), 437–449 (2020). https://doi.org/10.1002/mrm.28111

    Article  Google Scholar 

  7. Guermazi, A., et al.: Brief report: Partial- and full-thickness focal cartilage defects contribute equally to development of new cartilage damage in knee osteoarthritis: The multicenter osteoarthritis study. Arthritis Rheumatol. 69(3), 560–564 (2017). https://doi.org/10.1002/art.39970

    Article  MATH  Google Scholar 

  8. Hering, A., et al.: Learn2reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning. IEEE Trans. Med. Imaging 42(3), 697–712 (2023). https://doi.org/10.1109/TMI.2022.3213983

    Article  MATH  Google Scholar 

  9. Isensee, F., et al.: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. Nat. Methods (2018). https://doi.org/10.1038/s41592-020-01008-z

    Article  MATH  Google Scholar 

  10. Khan, S., Azam, B., Yao, Y., Chen, W.: Deep collaborative network with alpha matte for precise knee tissue segmentation from MRI. Comput. Methods Programs Biomed. 222, 106963 (2022). https://doi.org/10.1016/j.cmpb.2022.106963

    Article  MATH  Google Scholar 

  11. Li, S., Zhao, S., Zhang, Y., Hong, J., Chen, W.: Source-free unsupervised adaptive segmentation for knee joint MRI. Biomed. Signal Process. Control 92, 106028 (2024). https://doi.org/10.1016/j.bspc.2024.106028

    Article  MATH  Google Scholar 

  12. Li, X., et al.: SDMT: spatial dependence multi-task transformer network for 3D knee MRI segmentation and landmark localization. IEEE Trans. Med. Imaging 42(8), 2274–2285 (2023). https://doi.org/10.1109/TMI.2023.3247543

    Article  MATH  Google Scholar 

  13. Liang, D., Liu, J., Wang, K., Luo, G., Wang, W., Li, S.: Position-prior clustering-based self-attention module for knee cartilage segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, pp. 193–202. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_19

    Chapter  MATH  Google Scholar 

  14. Liu, F., Zhou, Z., Jang, H., Samsonov, A., Zhao, G., Kijowski, R.: Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn. Reson. Med. 79(4), 2379–2391 (2018). https://doi.org/10.1002/mrm.26841

    Article  Google Scholar 

  15. Liu, Q., Xu, Z., Jiao, Y., Niethammer, M.: iSegFormer: interactive segmentation via transformers with application to 3D knee MR images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, pp. 464–474. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_45

    Chapter  MATH  Google Scholar 

  16. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024). https://doi.org/10.1038/s41467-024-44824-z

    Article  MATH  Google Scholar 

  17. Maerz, T., Newton, M., Matthew, H., Baker, K.: Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization. Osteoarthritis Cartilage 24(2), 290–298 (2016). https://doi.org/10.1016/j.joca.2015.09.006

    Article  MATH  Google Scholar 

  18. Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2020, pp. 211–221. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21

    Chapter  MATH  Google Scholar 

  19. Panfilov, E., Tiulpin, A., Nieminen, M.T., Saarakkala, S., Casula, V.: Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: data from the osteoarthritis initiative. J. Orthop. Res. 40(5), 1113–1124 (2022). https://doi.org/10.1002/jor.25150

    Article  Google Scholar 

  20. Shen, Z., Han, X., Xu, Z., Niethammer, M.: Networks for joint affine and non-parametric image registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  21. Williams, T.G., et al.: Anatomically corresponded regional analysis of cartilage in asymptomatic and osteoarthritic knees by statistical shape modelling of the bone. IEEE Trans. Med. Imaging 29(8), 1541–1559 (2010). https://doi.org/10.1109/TMI.2010.2047653

    Article  MATH  Google Scholar 

  22. Wirth, W., et al.: Regional analysis of femorotibial cartilage loss in a subsample from the osteoarthritis initiative progression subcohort. Osteoarthritis Cartilage 17(3), 291–297 (2009). https://doi.org/10.1016/j.joca.2008.07.008

  23. Wirth, W., Eckstein, F.: A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging. IEEE Trans. Med. Imaging 27(6), 737–744 (2008). https://doi.org/10.1109/TMI.2007.907323

    Article  MATH  Google Scholar 

  24. Xu, Z., Niethammer, M.: DeepAtlas: joint semi-supervised learning of image registration and segmentation. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, pp. 420–429. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_47

    Chapter  MATH  Google Scholar 

  25. Yao, Y., Zhong, J., Zhang, L., Khan, S., Chen, W.: CartiMorph: a framework for automated knee articular cartilage morphometrics. Med. Image Anal. 91, 103035 (2024). https://doi.org/10.1016/j.media.2023.103035

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the United Kingdom Research and Innovation (grant EP/S02431X/1), UKRI Centre for Doctoral Training in Biomedical AI at the University of Edinburgh, School of Informatics. For the purpose of open access, the author has applied a creative commons attribution (CC BY) licence to any author accepted manuscript version arising.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongcheng Yao .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, Y., Chen, W. (2025). Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics. In: Wu, S., Shabestari, B., Xing, L. (eds) Applications of Medical Artificial Intelligence. AMAI 2024. Lecture Notes in Computer Science, vol 15384. Springer, Cham. https://doi.org/10.1007/978-3-031-82007-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82007-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82006-9

  • Online ISBN: 978-3-031-82007-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics