Abstract
Imaging features of knee articular cartilage have been shown to be potential imaging biomarkers for knee osteoarthritis. Despite recent methodological advancements in image analysis techniques like image segmentation, registration, and domain-specific image computing algorithms, only a few works focus on building fully automated pipelines for imaging feature extraction. In this study, we developed a deep-learning-based medical image analysis application for knee cartilage morphometrics, CartiMorph Toolbox (CMT). We proposed a 2-stage joint template learning and registration network, CMT-reg. We trained the model using the OAI-ZIB dataset and assessed its performance in template-to-image registration. The CMT-reg demonstrated competitive results compared to other state-of-the-art models. We integrated the proposed model into an automated pipeline for the quantification of cartilage shape and lesion (full-thickness cartilage loss, specifically). The toolbox provides a comprehensive, user-friendly solution for medical image analysis and data visualization. The software and models are available at https://github.com/YongchengYAO/CMT-AMAI24paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ambellan, F., Tack, A., Ehlke, M., Zachow, S.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med. Image Anal. 52, 109–118 (2019). https://doi.org/10.1016/j.media.2018.11.009
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019). https://doi.org/10.1109/TMI.2019.2897538
Ding, Z., Niethammer, M.: Aladdin: joint atlas building and diffeomorphic registration learning with pairwise alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20784–20793 (2022)
Dório, M., et al.: Association of baseline and change in tibial and femoral cartilage thickness and development of widespread full-thickness cartilage loss in knee osteoarthritis - data from the osteoarthritis initiative. Osteoarthritis Cartilage 28(6), 811–818 (2020). https://doi.org/10.1016/j.joca.2020.03.011
Favre, J., Erhart-Hledik, J.C., Blazek, K., Fasel, B., Gold, G.E., Andriacchi, T.P.: Anatomically standardized maps reveal distinct patterns of cartilage thickness with increasing severity of medial compartment knee osteoarthritis. J. Orthop. Res. 35(11), 2442–2451 (2017). https://doi.org/10.1002/jor.23548
Gaj, S., Yang, M., Nakamura, K., Li, X.: Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn. Reson. Med. 84(1), 437–449 (2020). https://doi.org/10.1002/mrm.28111
Guermazi, A., et al.: Brief report: Partial- and full-thickness focal cartilage defects contribute equally to development of new cartilage damage in knee osteoarthritis: The multicenter osteoarthritis study. Arthritis Rheumatol. 69(3), 560–564 (2017). https://doi.org/10.1002/art.39970
Hering, A., et al.: Learn2reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning. IEEE Trans. Med. Imaging 42(3), 697–712 (2023). https://doi.org/10.1109/TMI.2022.3213983
Isensee, F., et al.: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. Nat. Methods (2018). https://doi.org/10.1038/s41592-020-01008-z
Khan, S., Azam, B., Yao, Y., Chen, W.: Deep collaborative network with alpha matte for precise knee tissue segmentation from MRI. Comput. Methods Programs Biomed. 222, 106963 (2022). https://doi.org/10.1016/j.cmpb.2022.106963
Li, S., Zhao, S., Zhang, Y., Hong, J., Chen, W.: Source-free unsupervised adaptive segmentation for knee joint MRI. Biomed. Signal Process. Control 92, 106028 (2024). https://doi.org/10.1016/j.bspc.2024.106028
Li, X., et al.: SDMT: spatial dependence multi-task transformer network for 3D knee MRI segmentation and landmark localization. IEEE Trans. Med. Imaging 42(8), 2274–2285 (2023). https://doi.org/10.1109/TMI.2023.3247543
Liang, D., Liu, J., Wang, K., Luo, G., Wang, W., Li, S.: Position-prior clustering-based self-attention module for knee cartilage segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, pp. 193–202. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_19
Liu, F., Zhou, Z., Jang, H., Samsonov, A., Zhao, G., Kijowski, R.: Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn. Reson. Med. 79(4), 2379–2391 (2018). https://doi.org/10.1002/mrm.26841
Liu, Q., Xu, Z., Jiao, Y., Niethammer, M.: iSegFormer: interactive segmentation via transformers with application to 3D knee MR images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, pp. 464–474. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_45
Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024). https://doi.org/10.1038/s41467-024-44824-z
Maerz, T., Newton, M., Matthew, H., Baker, K.: Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization. Osteoarthritis Cartilage 24(2), 290–298 (2016). https://doi.org/10.1016/j.joca.2015.09.006
Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2020, pp. 211–221. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21
Panfilov, E., Tiulpin, A., Nieminen, M.T., Saarakkala, S., Casula, V.: Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: data from the osteoarthritis initiative. J. Orthop. Res. 40(5), 1113–1124 (2022). https://doi.org/10.1002/jor.25150
Shen, Z., Han, X., Xu, Z., Niethammer, M.: Networks for joint affine and non-parametric image registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Williams, T.G., et al.: Anatomically corresponded regional analysis of cartilage in asymptomatic and osteoarthritic knees by statistical shape modelling of the bone. IEEE Trans. Med. Imaging 29(8), 1541–1559 (2010). https://doi.org/10.1109/TMI.2010.2047653
Wirth, W., et al.: Regional analysis of femorotibial cartilage loss in a subsample from the osteoarthritis initiative progression subcohort. Osteoarthritis Cartilage 17(3), 291–297 (2009). https://doi.org/10.1016/j.joca.2008.07.008
Wirth, W., Eckstein, F.: A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging. IEEE Trans. Med. Imaging 27(6), 737–744 (2008). https://doi.org/10.1109/TMI.2007.907323
Xu, Z., Niethammer, M.: DeepAtlas: joint semi-supervised learning of image registration and segmentation. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, pp. 420–429. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_47
Yao, Y., Zhong, J., Zhang, L., Khan, S., Chen, W.: CartiMorph: a framework for automated knee articular cartilage morphometrics. Med. Image Anal. 91, 103035 (2024). https://doi.org/10.1016/j.media.2023.103035
Acknowledgments
This work was supported by the United Kingdom Research and Innovation (grant EP/S02431X/1), UKRI Centre for Doctoral Training in Biomedical AI at the University of Edinburgh, School of Informatics. For the purpose of open access, the author has applied a creative commons attribution (CC BY) licence to any author accepted manuscript version arising.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yao, Y., Chen, W. (2025). Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics. In: Wu, S., Shabestari, B., Xing, L. (eds) Applications of Medical Artificial Intelligence. AMAI 2024. Lecture Notes in Computer Science, vol 15384. Springer, Cham. https://doi.org/10.1007/978-3-031-82007-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-82007-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82006-9
Online ISBN: 978-3-031-82007-6
eBook Packages: Computer ScienceComputer Science (R0)