Skip to main content

Ensemble-KAN: Leveraging Kolmogorov Arnold Networks to Discriminate Individuals with Psychiatric Disorders from Controls

  • Conference paper
  • First Online:
Applications of Medical Artificial Intelligence (AMAI 2024)

Abstract

Machine learning (ML) techniques are crucial for improving diagnostic accuracy in psychiatry using neuroimaging-based biomarkers. Deep learning models like Kolmogorov Arnold Networks (KANs) are particularly promising in this context but struggle with high-dimensional datasets. We propose the Ensemble-KAN (E-KAN) method to overcome these limitations, integrating multiple base learners. Our novel approach aims to advance classification especially when multiple sources of data are available. The E-KAN was tested against traditional ML models in discriminating recent-onset psychosis (ROP) or depression (ROD) from healthy controls using multimodal environmental and neuroimaging data and it underwent a rigorous ablation study to test its effectiveness. Results demonstrate enhanced performance over traditional ML models, highlighting the efficacy of E-KAN models in psychiatric diagnostics. Specifically, our E-KAN achieved an accuracy of 72.5%, outperforming single-KAN models and traditional ML algorithms. This study underscores the potential of E-KAN models in advancing psychiatric research and personalized medicine through improved diagnostic capabilities. The code is available at https://github.com/brainpolislab/E-KAN.

N. Koutsouleris, P. Brambilla and E. Maggioni—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sampaio et al., I.W.: neurocombat_pyclasse (2024). https://github.com/inesws/neurocombat_pyClasse

  2. Arik, S.Ö., Pfister, T.: Tabnet: attentive interpretable tabular learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 6679–6687 (2021)

    Google Scholar 

  3. Berisha, V., Krantsevich, C., Hahn, P.R., Hahn, S., Dasarathy, G., Turaga, P., Liss, J.: Digital medicine and the curse of dimensionality. NPJ Digital Med. 4(1), 153 (2021)

    Article  MATH  Google Scholar 

  4. Bozorgasl, Z., Chen, H.: Wav-kan: wavelet kolmogorov-arnold networks. arXiv preprint arXiv:2405.12832 (2024)

  5. Buciuman, M.O., et al.: Structural and functional brain patterns predict formal thought disorder’s severity and its persistence in recent-onset psychosis: Results from the pronia study. Biological Psychiatry: Cognitive Neurosci. Neuroimaging 8(12), 1207–1217 (2023). https://doi.org/10.1016/j.bpsc.2023.06.001. https://www.sciencedirect.com/science/article/pii/S2451902223001441

  6. Colombo, F., Calesella, F., Mazza, M.G., Melloni, E.M.T., Morelli, M.J., Scotti, G.M., Benedetti, F., Bollettini, I., Vai, B.: Machine learning approaches for prediction of bipolar disorder based on biological, clinical and neuropsychological markers: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 135, 104552 (2022)

    Article  Google Scholar 

  7. Dietterich, T.G.: Ensemble methods in machine learning. In: International Workshop on Multiple Classifier Systems, pp. 1–15. Springer (2000)

    Google Scholar 

  8. Dosenbach, N.U., et al.: Prediction of individual brain maturity using FMRI. Science 329(5997), 1358–1361 (2010)

    Article  MATH  Google Scholar 

  9. ENIGMA-consortium: About enigma. https://enigma.ini.usc.edu/about-2/

  10. Gaser, C., Dahnke, R., Thompson, P.M., Kurth, F., Luders, E., Initiative, A.D.N.: Cat–a computational anatomy toolbox for the analysis of structural mri data. biorxiv, pp. 2022–06 (2022)

    Google Scholar 

  11. Hammers, A., Allom, R., Koepp, M.J., Free, S.L., Myers, R., Lemieux, L., Mitchell, T.N., Brooks, D.J., Duncan, J.S.: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum. Brain Mapp. 19(4), 224–247 (2003)

    Article  Google Scholar 

  12. Jović, A., Brkić, K., Bogunović, N.: A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205. IEEE (2015)

    Google Scholar 

  13. Kolmogorov, A.N.: On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. In: Doklady Akademii Nauk. vol. 114, pp. 953–956. Russian Academy of Sciences (1957)

    Google Scholar 

  14. Li, C., Liu, X., Li, W., Wang, C., Liu, H., Yuan, Y.: U-kan makes strong backbone for medical image segmentation and generation. arXiv e-prints pp. arXiv–2406 (2024)

    Google Scholar 

  15. Li, Y., Xu, Z., Wang, Y., Zhou, H., Zhang, Q.: Su-net and du-net fusion for tumour segmentation in histopathology images. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 461–465. IEEE (2020)

    Google Scholar 

  16. Liu, Z.: pykan repository on github (2024). https://github.com/KindXiaoming/pykan

  17. Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T.Y., Tegmark, M.: Kan: kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756 (2024)

  18. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

  19. Momeni, A., Thibault, M., Gevaert, O.: Dropout-enabled ensemble learning for multi-scale biomedical data. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part I 4, pp. 407–415. Springer (2019)

    Google Scholar 

  20. Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E.: Statistical parametric mapping: the analysis of functional brain images. Elsevier (2011)

    Google Scholar 

  21. Prata, D., Mechelli, A., Kapur, S.: Clinically meaningful biomarkers for psychosis: a systematic and quantitative review. Neurosci. Biobehav. Rev. 45, 134–141 (2014)

    Article  MATH  Google Scholar 

  22. PRONIA-consortium: Pronia-the project. http://www.proniapredictors.eu/pronia/the-project/index.html

  23. Sampaio, I.W., et al.: Comparison of multi-site neuroimaging data harmonization techniques for machine learning applications. In: IEEE EUROCON 2023 - 20th International Conference on Smart Technologies, pp. 307–312 (2023). https://doi.org/10.1109/EUROCON56442.2023.10198911

  24. Shorfuzzaman, M.: Iot-enabled stacked ensemble of deep neural networks for the diagnosis of covid-19 using chest CT scans. Computing 105(4), 887–908 (2023)

    Article  Google Scholar 

  25. Thomas, G.D.: Machine learning research: four current directions. Artif. Intell. Mag. 18(4), 97–136 (1997)

    MATH  Google Scholar 

  26. Walter, M., Alizadeh, S., Jamalabadi, H., Lueken, U., Dannlowski, U., Walter, H., Olbrich, S., Colic, L., Kambeitz, J., Koutsouleris, N., Hahn, T., Dwyer, D.B.: Translational machine learning for psychiatric neuroimaging. Progress Neuro-Psychopharmacology Biological Psychiatry 91, 113–121 (2019). https://doi.org/10.1016/j.pnpbp.2018.09.014. https://www.sciencedirect.com/science/article/pii/S0278584618304500, promising neural biomarkers and predictors of treatment outcomes for psychiatric disorders: Novel neuroimaging approaches

  27. Woo, C.W., Chang, L.J., Lindquist, M.A., Wager, T.D.: Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20(3), 365–377 (2017)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This study was supported by EU-FP7 project PRONIA (Personalized Prognostic Tools for Early Psychosis Management) under the Grant Agreement n\(^{\textrm{o}}\) 602152 (PI: NK). EM was supported by the European Union - NextGeneration EU (PRIN 2022 PNRR, grant n. P20229MFRC); GDF was supported by the Italian Ministry of Health (grant n\(^{\textrm{o}}\) GR-2018-12367290). IWS was supported by grants from EBRAINS-Italy, project funded under the National Recovery and Resilience Plan (NRRP), Mission 4, “Education and Research” - Component 2, “From research to Business” Investment 3.1 - Call for tender n\(^{\textrm{o}}\) 3264 of Dec 28, 2021 of Italian Ministry of University and Research (MUR) funded by the European Union - NextGenerationEU, with award number: Project code IR0000011, Concession Decree n\(^{\textrm{o}}\) 117 of June 21, 2022 adopted by the Italian Ministry of University and Research, CUP B51E22000150006, Project title “EBRAINS-Italy (European Brain ReseArch INfrastruc-tureS-Italy). PB was partially supported by the Italian Ministry of University and Research (Dipartimenti di Eccellenza Program 2023-2027 - Dept of Pathophysiology and Transplantation, University of Milan), the Italian Ministry of Health (Hub Life Science- Diagnostica Avanzata, HLS-DA, PNC-E3-2022-23683266- CUP: C43C22001630001/MI-0117; Ricerca Corrente 2024) and by the Fondazione Cariplo (grant n\(^{\textrm{o}}\) 2019-3416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Brambilla .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

No competing interest to declare

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Franceschi, G. et al. (2025). Ensemble-KAN: Leveraging Kolmogorov Arnold Networks to Discriminate Individuals with Psychiatric Disorders from Controls. In: Wu, S., Shabestari, B., Xing, L. (eds) Applications of Medical Artificial Intelligence. AMAI 2024. Lecture Notes in Computer Science, vol 15384. Springer, Cham. https://doi.org/10.1007/978-3-031-82007-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82007-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82006-9

  • Online ISBN: 978-3-031-82007-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics