Abstract
The pursuit of efficiency in physical simulation is an ever-lasting goal in the field of computer graphics and numerical coarsening is one of the promising solutions. To apply the numerical coarsening to the tetrahedral mesh, we merge tetrahedral elements of the fine mesh into polyhedron elements. By reducing the degrees of freedom(DoFs), we can accelerate the simulation. To overcome the challenge of simulations on the coarse mesh, we use the virtual element method(VEM) which is robust for the simulation of polyhedron mesh. We optimize the polyhedron mesh to capture the material behavior and increase the accuracy of the simulation. We apply the alternating direction method of multipliers(ADMM) to the simulation scheme to achieve more efficiency. The experiment results demonstrate that our method can apply to the numerical coarsening for tetrahedral mesh and accelerate the simulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bouaziz, S., Martin, S., Liu, T., Kavan, L., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 787–797 (2023)
Brandt, C., Eisemann, E., Hildebrandt, K.: Hyper-reduced projective dynamics. ACM Trans. Graph. 37(4), 1–13 (2018)
Chen, D., Levin, D.I., Matusik, W., Kaufman, D.M.: Dynamics-aware numerical coarsening for fabrication design. ACM Trans. Graph. (TOG) 36(4), 1–15 (2017)
Chen, J., Bao, H., Wang, T., Desbrun, M., Huang, J.: Numerical coarsening using discontinuous shape functions. ACM Trans. Graph. (TOG) 37(4), 1–12 (2018)
Chen, J., Budninskiy, M., Owhadi, H., Bao, H., Huang, J., Desbrun, M.: Material-adapted refinable basis functions for elasticity simulation. ACM Trans. Graph. (TOG) 38(6), 1–15 (2019)
Chen, Y.J., Levin, D.I., Kaufmann, D., Ascher, U., Pai, D.K.: EigenFit for consistent elastodynamic simulation across mesh resolution. In: Proceedings of the 18th annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–13 (2019)
Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., Gross, M.: Rig-space physics. ACM Trans. Graph. 31(4), 1–8 (2012)
Hauser, K.K., Shen, C., O’Brien, J.F.: Interactive deformation using modal analysis with constraints. In: Graphics Interface, vol. 3, pp. 16–17 (2003)
He, Z.Q., Pérez, J., Otaduy, M.: Fast numerical coarsening with local factorizations. Comput. Graph. Forum 41 (2022)
Kharevych, L., Mullen, P., Owhadi, H., Desbrun, M.: Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. (TOG) 28(3), 1–8 (2009)
Narain, R., Overby, M., Brown, G.E.: ADMM \(\supseteq \) projective dynamics: fast simulation of general constitutive models. In: Symposium on Computer Animation, vol. 1, p. 2016 (2016)
Nesme, M., Kry, P.G., Jeřábková, L., Faure, F.: Preserving topology and elasticity for embedded deformable models. In: ACM SIGGRAPH 2009 papers, pp. 1–9 (2009)
Torres, R., Rodríguez, A., Espadero, J.M., Otaduy, M.A.: High-resolution interaction with corotational coarsening models. ACM Trans. Graph. (TOG) 35(6), 1–11 (2016)
Trusty, T., Benchekroun, O., Grinspun, E., Kaufman, D.M., Levin, D.I.: Subspace mixed finite elements for real-time heterogeneous elastodynamics. In: SIGGRAPH Asia 2023 Conference Papers, pp. 1–10 (2023)
Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)
Wriggers, P., Hudobivnik, B.A.F.: A virtual element formulation for general element shapes. Comput. Mech. Solids Fluids Fract. Transp. Phenom. Variational Methods 66(4) (2020)
Xu, H., Li, Y., Chen, Y., Barbič, J.: Interactive material design using model reduction. ACM Trans. Graph. (TOG) 34(2), 1–14 (2015)
Yang, Y., Li, D., Xu, W., Tian, Y., Zheng, C.: Expediting precomputation for reduced deformable simulation. ACM Trans. Graph. 34(6cd), 243.1–243.13 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 18597 KB)
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ni, N., Liu, L. (2025). Numerical Coarsening for Tetrahedral Meshes. In: Magnenat-Thalmann, N., Kim, J., Sheng, B., Deng, Z., Thalmann, D., Li, P. (eds) Advances in Computer Graphics. CGI 2024. Lecture Notes in Computer Science, vol 15339. Springer, Cham. https://doi.org/10.1007/978-3-031-82021-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-82021-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82020-5
Online ISBN: 978-3-031-82021-2
eBook Packages: Computer ScienceComputer Science (R0)