Skip to main content

Numerical Coarsening for Tetrahedral Meshes

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15339))

Included in the following conference series:

  • 140 Accesses

Abstract

The pursuit of efficiency in physical simulation is an ever-lasting goal in the field of computer graphics and numerical coarsening is one of the promising solutions. To apply the numerical coarsening to the tetrahedral mesh, we merge tetrahedral elements of the fine mesh into polyhedron elements. By reducing the degrees of freedom(DoFs), we can accelerate the simulation. To overcome the challenge of simulations on the coarse mesh, we use the virtual element method(VEM) which is robust for the simulation of polyhedron mesh. We optimize the polyhedron mesh to capture the material behavior and increase the accuracy of the simulation. We apply the alternating direction method of multipliers(ADMM) to the simulation scheme to achieve more efficiency. The experiment results demonstrate that our method can apply to the numerical coarsening for tetrahedral mesh and accelerate the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouaziz, S., Martin, S., Liu, T., Kavan, L., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 787–797 (2023)

    Google Scholar 

  2. Brandt, C., Eisemann, E., Hildebrandt, K.: Hyper-reduced projective dynamics. ACM Trans. Graph. 37(4), 1–13 (2018)

    Article  Google Scholar 

  3. Chen, D., Levin, D.I., Matusik, W., Kaufman, D.M.: Dynamics-aware numerical coarsening for fabrication design. ACM Trans. Graph. (TOG) 36(4), 1–15 (2017)

    Article  MATH  Google Scholar 

  4. Chen, J., Bao, H., Wang, T., Desbrun, M., Huang, J.: Numerical coarsening using discontinuous shape functions. ACM Trans. Graph. (TOG) 37(4), 1–12 (2018)

    MATH  Google Scholar 

  5. Chen, J., Budninskiy, M., Owhadi, H., Bao, H., Huang, J., Desbrun, M.: Material-adapted refinable basis functions for elasticity simulation. ACM Trans. Graph. (TOG) 38(6), 1–15 (2019)

    Article  MATH  Google Scholar 

  6. Chen, Y.J., Levin, D.I., Kaufmann, D., Ascher, U., Pai, D.K.: EigenFit for consistent elastodynamic simulation across mesh resolution. In: Proceedings of the 18th annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–13 (2019)

    Google Scholar 

  7. Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., Gross, M.: Rig-space physics. ACM Trans. Graph. 31(4), 1–8 (2012)

    Article  Google Scholar 

  8. Hauser, K.K., Shen, C., O’Brien, J.F.: Interactive deformation using modal analysis with constraints. In: Graphics Interface, vol. 3, pp. 16–17 (2003)

    Google Scholar 

  9. He, Z.Q., Pérez, J., Otaduy, M.: Fast numerical coarsening with local factorizations. Comput. Graph. Forum 41 (2022)

    Google Scholar 

  10. Kharevych, L., Mullen, P., Owhadi, H., Desbrun, M.: Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. (TOG) 28(3), 1–8 (2009)

    Article  MATH  Google Scholar 

  11. Narain, R., Overby, M., Brown, G.E.: ADMM \(\supseteq \) projective dynamics: fast simulation of general constitutive models. In: Symposium on Computer Animation, vol. 1, p. 2016 (2016)

    Google Scholar 

  12. Nesme, M., Kry, P.G., Jeřábková, L., Faure, F.: Preserving topology and elasticity for embedded deformable models. In: ACM SIGGRAPH 2009 papers, pp. 1–9 (2009)

    Google Scholar 

  13. Torres, R., Rodríguez, A., Espadero, J.M., Otaduy, M.A.: High-resolution interaction with corotational coarsening models. ACM Trans. Graph. (TOG) 35(6), 1–11 (2016)

    Article  Google Scholar 

  14. Trusty, T., Benchekroun, O., Grinspun, E., Kaufman, D.M., Levin, D.I.: Subspace mixed finite elements for real-time heterogeneous elastodynamics. In: SIGGRAPH Asia 2023 Conference Papers, pp. 1–10 (2023)

    Google Scholar 

  15. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

    Google Scholar 

  16. Wriggers, P., Hudobivnik, B.A.F.: A virtual element formulation for general element shapes. Comput. Mech. Solids Fluids Fract. Transp. Phenom. Variational Methods 66(4) (2020)

    Google Scholar 

  17. Xu, H., Li, Y., Chen, Y., Barbič, J.: Interactive material design using model reduction. ACM Trans. Graph. (TOG) 34(2), 1–14 (2015)

    Article  MATH  Google Scholar 

  18. Yang, Y., Li, D., Xu, W., Tian, Y., Zheng, C.: Expediting precomputation for reduced deformable simulation. ACM Trans. Graph. 34(6cd), 243.1–243.13 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligang Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 18597 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ni, N., Liu, L. (2025). Numerical Coarsening for Tetrahedral Meshes. In: Magnenat-Thalmann, N., Kim, J., Sheng, B., Deng, Z., Thalmann, D., Li, P. (eds) Advances in Computer Graphics. CGI 2024. Lecture Notes in Computer Science, vol 15339. Springer, Cham. https://doi.org/10.1007/978-3-031-82021-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82021-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82020-5

  • Online ISBN: 978-3-031-82021-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics