Skip to main content

Towards Finer Human Reconstruction for Single RGB-D Images

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15339))

Included in the following conference series:

  • 125 Accesses

Abstract

Existing methods on the parametric model assisted human surface reconstruction from single RGB-D images are still difficult to obtain fine results. This article proposes an improved method which includes three tactics to overcome this limitation. First, a direct optimization scheme is adopted to refine the parametric model for better back prior, considering that the estimated model can be inaccurate and thus affect the reconstruction performances. Second, a new encoder-decoder structured residual-feature based back refinement network is proposed to further polish the initial back surface. It can preserve the global human shapes and poses without missing body parts while keeping local details. Here, a learnable weighted based cross attention module (LCA) is embedded, which adaptively merges the residual features in high levels from both the SMPL-X and initial back depths via cross-attention for rich details. Thirdly, a new silhouette loss on both front and back surfaces is introduced, so that fine back surfaces with smooth transition between the front and back can be reached. With those three tactics, a novel framework is proposed for robust surface reconstruction for single RGB-D images. Experiment results show that the proposed approach can obtain surfaces with significant details without missing parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alldieck, T., Zanfir, M., Sminchisescu, C.: Photorealistic monocular 3D reconstruction of humans wearing clothing. In: CVPR, pp. 1506–1515 (2022)

    Google Scholar 

  2. Burov, A., Nießner, M., Thies, J.: Dynamic surface function networks for clothed human bodies. In: ICCV, pp. 10754–10764 (2021)

    Google Scholar 

  3. Cai, H., Feng, W., Feng, X., Wang, Y., Zhang, J.: Neural surface reconstruction of dynamic scenes with monocular RGB-D camera. In: NIPS (2022)

    Google Scholar 

  4. Cai, Z., et al.: SMPLer-X: scaling up expressive human pose and shape estimation. NIPS 36 (2024)

    Google Scholar 

  5. Cao, Y., Han, K., Wong, K.Y.K.: SeSDF: self-evolved signed distance field for implicit 3D clothed human reconstruction. In: CVPR, pp. 4647–4657 (2023)

    Google Scholar 

  6. Chen, L., Peng, S., Zhou, X.: Towards efficient and photorealistic 3D human reconstruction: a brief survey. Vis. Inf. 5(4), 11–19 (2021)

    MATH  Google Scholar 

  7. Cheng, W., et al.: Generalizable neural performer: learning robust radiance fields for human novel view synthesis. arXiv preprint arXiv:2204.11798 (2022)

  8. Chun, S., Park, S., Chang, J.Y.: Learnable human mesh triangulation for 3D human pose and shape estimation. In: WACV, pp. 2850–2859 (2023)

    Google Scholar 

  9. Dong, Z., Xu, K., Duan, Z., Bao, H., Xu, W., Lau, R.: Geometry-aware two-scale PIFu representation for human reconstruction. NIPS 35, 31130–31144 (2022)

    Google Scholar 

  10. Dou, M., Fuchs, H.: Temporally enhanced 3D capture of room-sized dynamic scenes with commodity depth cameras. In: IEEE VR, pp. 39–44 (2014)

    Google Scholar 

  11. Fang, X., Qian, Y., He, J., Wang, L., Liu, Z.: Fine back surfaces oriented human reconstruction for single RGB-D images. Comput. Graph. Forum 42(7), e14971 (2023)

    Article  Google Scholar 

  12. Feng, Y., Choutas, V., Bolkart, T., Tzionas, D., Black, M.J.: Collaborative regression of expressive bodies using moderation. In: 3DV, pp. 792–804 (2021)

    Google Scholar 

  13. Blender Foundation: Blender. https://www.blender.org/. Accessed 28 May 2023

  14. Gabeur, V., Franco, J.S., Martin, X., Schmid, C., Rogez, G.: Moulding humans: non-parametric 3D human shape estimation from single images. In: ICCV, pp. 2232–2241 (2019)

    Google Scholar 

  15. Guo, K., Xu, F., Yu, T., Liu, X., Dai, Q., Liu, Y.: Real-time geometry, albedo, and motion reconstruction using a single RGB-D camera. ACM TOG 36(4), 1 (2017)

    Article  MATH  Google Scholar 

  16. Hu, S., Hong, F., Pan, L., Mei, H., Yang, L., Liu, Z.: SHERF: generalizable human NeRF from a single image. arXiv preprint arXiv:2303.12791 (2023)

  17. Huang, Y., et al.: TeCH: text-guided reconstruction of lifelike clothed humans. In: 3DV (2024)

    Google Scholar 

  18. Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., Stamminger, M.: VolumeDeform: real-time volumetric non-rigid reconstruction. In: ECCV, pp. 362–379. Springer (2016)

    Google Scholar 

  19. Jiang, B., Zhang, J., Hong, Y., Luo, J., Liu, L., Bao, H.: BCNet: learning body and cloth shape from a single image. In: ECCV, pp. 18–35. Springer (2020)

    Google Scholar 

  20. Keller, M., Lefloch, D., Lambers, M., Izadi, S., Weyrich, T., Kolb, A.: Real-time 3D reconstruction in dynamic scenes using point-based fusion. In: 3DV, pp. 1–8 (2013)

    Google Scholar 

  21. Kolotouros, N., Pavlakos, G., Daniilidis, K.: Convolutional mesh regression for single-image human shape reconstruction. In: CVPR, pp. 4501–4510 (2019)

    Google Scholar 

  22. Lazova, V., Insafutdinov, E., Pons-Moll, G.: 360-degree textures of people in clothing from a single image. In: 3DV, pp. 643–653. IEEE (2019)

    Google Scholar 

  23. Li, X., Fan, Y., Xu, D., He, W., Lv, G., Liu, S.: SFNet: clothed human 3D reconstruction via single side-to-front view RGB-D image. In: 2022 8th International Conference on Virtual Reality (ICVR), pp. 15–20 (2022)

    Google Scholar 

  24. Liao, T., et al.: High-fidelity clothed avatar reconstruction from a single image. In: CVPR, pp. 8662–8672 (2023)

    Google Scholar 

  25. Liu, C., Wang, A., Bu, C., Liu, T., Sui, J., He, S.: Reconstructing complete human bodies using limited scans obtained via viewpoint auto-changing oriented toward rescue operations. IEEE TIM 72, 1–12 (2023)

    Google Scholar 

  26. Liu, X., et al.: GVA: Reconstructing vivid 3D Gaussian avatars from monocular videos. arXiv preprint (2024)

    Google Scholar 

  27. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM TOG 34(6), 1–16 (2015)

    Article  Google Scholar 

  28. Lu, Y., Yu, H., Ni, W., Song, L.: 3D real-time human reconstruction with a single RGBD camera. Appl. Intell. 53(8), 8735–8745 (2023)

    Article  MATH  Google Scholar 

  29. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. CACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  30. Natsume, R., et al.: SiCloPe: silhouette-based clothed people. In: CVPR, pp. 4480–4490 (2019)

    Google Scholar 

  31. Newcombe, R.A., Fox, D., Seitz, S.M.: DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. In: CVPR, pp. 343–352 (2015)

    Google Scholar 

  32. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR, pp. 10975–10985 (2019)

    Google Scholar 

  33. Pesavento, M., et al.: ANIM: accurate neural implicit model for human reconstruction from a single RGB-D image. In: CVPR (2024)

    Google Scholar 

  34. Qian, Z., Wang, S., Mihajlovic, M., Geiger, A., Tang, S.: 3DGS-Avatar: animatable avatars via deformable 3D Gaussian splatting. arXiv preprint arXiv:2312.09228 (2023)

  35. rlczddl: Awesome 3D human reconstruction. https://github.com/rlczddl/awesome-3d-human-reconstruction. Accessed 28 May 2023

  36. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: MICCAI, pp. 234–241. Springer (2015)

    Google Scholar 

  37. Saito, S., Simon, T., Saragih, J., Joo, H.: PIFuHD: multi-level pixel-aligned implicit function for high-resolution 3D human digitization. In: CVPR, pp. 84–93 (2020)

    Google Scholar 

  38. Saito, S., Yang, J., Ma, Q., Black, M.J.: SCANimate: weakly supervised learning of skinned clothed avatar networks. In: CVPR, pp. 2886–2897 (2021)

    Google Scholar 

  39. Shen, X., Yang, Z., Wang, X., Ma, J., Zhou, C., Yang, Y.: Global-to-local modeling for video-based 3D human pose and shape estimation. In: CVPR, pp. 8887–8896 (2023)

    Google Scholar 

  40. Slavcheva, M., Baust, M., Ilic, S.: SobolevFusion: 3D reconstruction of scenes undergoing free non-rigid motion. In: CVPR, pp. 2646–2655 (2018)

    Google Scholar 

  41. Song, D.Y., Lee, H., Seo, J., Cho, D.: DIFu: depth-guided implicit function for clothed human reconstruction. In: CVPR, pp. 8738–8747 (2023)

    Google Scholar 

  42. Tretschk, E., et al.: State of the art in dense monocular non-rigid 3D reconstruction. Comput. Graph. Forum 42(2), 485–520 (2023)

    Article  MATH  Google Scholar 

  43. Vo, K., Pham, T.T., Yamazaki, K., Tran, M., Le, N.: DNA: deformable neural articulations network for template-free dynamic 3D human reconstruction from monocular RGB-D video. In: CVPR, pp. 3675–3684 (2023)

    Google Scholar 

  44. Wang, L., Zhao, X., Yu, T., Wang, S., Liu, Y.: NormalGAN: learning detailed 3D human from a single RGB-D image. In: ECCV, pp. 430–446 (2020)

    Google Scholar 

  45. Xiu, Y., Yang, J., Cao, X., Tzionas, D., Black, M.J.: ECON: explicit clothed humans obtained from normal integration. In: CVPR, pp. 512–523 (2023)

    Google Scholar 

  46. Xiu, Y., Yang, J., Tzionas, D., Black, M.J.: ICON: implicit clothed humans obtained from normals. In: CVPR, pp. 13286–13296. IEEE (2022)

    Google Scholar 

  47. Yu, T., Zheng, Z., Guo, K., Liu, P., Dai, Q., Liu, Y.: Function4D: real-time human volumetric capture from very sparse consumer RGBD sensors. In: CVPR, pp. 5746–5756 (2021)

    Google Scholar 

  48. Yu, T., et al.: DoubleFusion: real-time capture of human performances with inner body shapes from a single depth sensor. In: CVPR, pp. 7287–7296 (2018)

    Google Scholar 

  49. Zhang, Z., Yang, Z., Yang, Y.: SIFU: side-view conditioned implicit function for real-world usable clothed human reconstruction. In: CVPR (2024)

    Google Scholar 

  50. Zhao, X., Hu, Y.T., Ren, Z., Schwing, A.G.: Occupancy planes for single-view RGB-D human reconstruction. In: AAAI (2023)

    Google Scholar 

  51. Zheng, R., Li, P., Wang, H., Yu, T.: Learning visibility field for detailed 3D human reconstruction and relighting. In: CVPR, pp. 216–226 (2023)

    Google Scholar 

  52. Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: DeepHuman: 3D human reconstruction from a single image. In: ICCV, pp. 7739–7749 (2019)

    Google Scholar 

  53. Zhi, T., Lassner, C., Tung, T., Stoll, C., Narasimhan, S.G., Vo, M.: TexMesh: reconstructing detailed human texture and geometry from RGB-D video. In: ECCV, pp. 492–509 (2020)

    Google Scholar 

  54. Zollhöfer, M., et al.: State of the art on 3D reconstruction with RGB-D cameras. Comput. Graph. Forum 37(2), 625–652 (2018)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work is supported by the Key Natural Science Fund of Department of Education of Anhui Province (KJ2021A0042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyong Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y., Qian, Y., Dai, R., Wang, L., Liu, Z., Fang, X. (2025). Towards Finer Human Reconstruction for Single RGB-D Images. In: Magnenat-Thalmann, N., Kim, J., Sheng, B., Deng, Z., Thalmann, D., Li, P. (eds) Advances in Computer Graphics. CGI 2024. Lecture Notes in Computer Science, vol 15339. Springer, Cham. https://doi.org/10.1007/978-3-031-82021-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82021-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82020-5

  • Online ISBN: 978-3-031-82021-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics