Skip to main content

Fast Mesh Generation in Multi-layer Lattice Boltzmann Simulation with Moving Boundaries

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15340))

Included in the following conference series:

  • 126 Accesses

Abstract

Large-scale computational fluid dynamics methods rely on efficient and accurate mesh generation algorithms, especially when handling complex geometries, as mesh generation in such cases can be time-consuming. This paper presents a new approach to mesh generation, integrating the multi-layer lattice Boltzmann method with moving boundaries. This technique minimizes the impact of machine errors on computational geometry, thereby improving the precision of geometric object recognition within the mesh. Furthermore, it significantly cuts down the time needed for mesh generation. Theoretical analyses and numerical experiments reveal that the time required for mesh generation in this study has been reduced by an order of magnitude, facilitating the rapid creation of multi-layer grid nodes numbering in the tens of millions within seconds. By combining moving grids with moving boundaries, this method verifies airflow around airfoils in various grid setups. Moreover, we have extended its application to three-dimensional space, effectively simulating submarine movements. In scenarios with moving boundaries, where mesh generation is necessary at each time step, this method particularly shines. It requires minimal additional computation time, which is a significant advantage. This makes it a practical solution for mesh generation in large-scale simulations. Such simulations often use the multi-layer lattice Boltzmann method and involve moving boundary flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56(14), 1505–1508 (1986)

    Article  MATH  Google Scholar 

  2. Connington, K.W., Lee, T., Morris, J.F.: Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid-gas-particle systems. J. Comput. Phys. 283, 453–477 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sheikholeslami, M., Ganji, D.D.: Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann method. Physica A 417, 273–286 (2015)

    Article  MATH  Google Scholar 

  4. Astoul, T., Wissocq, G., Boussuge, J.F., et al.: Lattice Boltzmann method for computational aeroacoustics on non-uniform meshes: a direct grid coupling approach. J. Comput. Phys. 447, 110667 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, Z.C., Soomro, M., Peng, C., et al.: Two pressure boundary conditions for multi-component multiphase flow simulations using the pseudo-potential lattice Boltzmann model. Comput. Fluids 248, 105672 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jiang, M.Q., Ma, K., Li, J., et al.: Hydrodynamic resolved simulation of a char particle combustion by immersed boundary-lattice Boltzmann method. Int. Commun. Heat Mass 132, 105915 (2022)

    Article  MATH  Google Scholar 

  7. Xue, X., Yao, H.D., Davidson, L.: Synthetic turbulence generator for lattice Boltzmann method at the interface between RANS and LES. Phys. Fluids 34(5), 055118 (2022)

    Article  MATH  Google Scholar 

  8. Sakthivel, M., Anupindi, K.: An off-lattice Boltzmann method for blood flow simulation through a model irregular arterial stenosis: the effects of amplitude and frequency of the irregularity. Phys. Fluids 33, 031912 (2021)

    Article  MATH  Google Scholar 

  9. Mondal, K., Bhattacharya, A.: Bubble dynamics and enhancement of pool boiling in presence of an idealized porous medium: a numerical study using Lattice Boltzmann method. J. Therm. Sci. Eng. Appl. 14, 081004 (2022)

    Article  MATH  Google Scholar 

  10. Delanaye, M., Aftosmis, M.J., Berger, M.J., et al.: Automatic hybrid-Cartesian grid generation for high-Reynolds number flows around complex geometries. In: Aerospace Sciences Meeting & Exhibit (1999)

    Google Scholar 

  11. Filippova, O., Hanel, D.: Grid refinement for lattice-BGK models. J. Comput. Phys. 147(1), 219–228 (1998)

    Article  MATH  Google Scholar 

  12. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley Publishing (2009)

    Google Scholar 

  13. Bonet, J., Peraire, J.: An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems. Int. J. Numer. Meth. Eng. 31(1), 1–17 (1991)

    Article  MATH  Google Scholar 

  14. Capizzano, F.: Automatic generation of locally refined Cartesian meshes: data management and algorithms. Int. J. Numer. Meth. Eng. 113(5) (2018)

    Google Scholar 

  15. Shevtsov, M., Soupikov, A., Kapustin, A.: Highly parallel fast KD-tree construction for interactive ray tracing of dynamic scenes. Comput. Graph. Forum 26(3), 395–404 (2010)

    Article  Google Scholar 

  16. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press (2001)

    Google Scholar 

  17. Qi, J., Klimach, H., Roller, S.: Implementation of the compact interpolation within the octree based Lattice Boltzmann solver Musubi. Comput. Math. App 78(4), 1131–1141 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Hou, S., Zou, Q., Chen, S., et al.: Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118, 329–347 (1995)

    Article  MATH  Google Scholar 

  19. Chen, H., Bi, L., Hua, R., et al.: An efficient cartesian mesh generation method based on fully threaded tree data structure. Acta Aeronaut. Astronaut. Sin., 1–15 (2021)

    Google Scholar 

  20. Ma, T., Li, P., Ma, T.: A three-dimensional cartesian mesh generation algorithm based on the GPU parallel ray casting method. Appl. Sci. 10(1), 58 (2019)

    Article  MATH  Google Scholar 

  21. Dilek, F.K.: On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at Re=1000. Int. J. Micro Air Veh. 7(3) (2015)

    Google Scholar 

  22. Mao, J., Zhao, L.H., Liu, X.N., et al.: An iterative divergence-free immersed boundary method in the finite element framework for moving bodies. Comput. Fluids 208 (2020)

    Google Scholar 

  23. Williamson, C.H.K.: Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579–627 (1989)

    Article  MATH  Google Scholar 

  24. He, P., Xie, J., Wang, L.J., Zhang, W.: A scalable moving boundary treatment in the lattice Boltzmann method. Appl. Sci. Basel 11(20) (2021)

    Google Scholar 

Download references

Acknowledgments

This study was funded by National Natural Science Foundation of China (No. 61873156) and Key Projects (No. 91630206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng He or Wenhao Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, P., Wang, L., Xu, L., Zhang, W., Zhu, W. (2025). Fast Mesh Generation in Multi-layer Lattice Boltzmann Simulation with Moving Boundaries. In: Magnenat-Thalmann, N., Kim, J., Sheng, B., Deng, Z., Thalmann, D., Li, P. (eds) Advances in Computer Graphics. CGI 2024. Lecture Notes in Computer Science, vol 15340. Springer, Cham. https://doi.org/10.1007/978-3-031-82024-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82024-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82023-6

  • Online ISBN: 978-3-031-82024-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics