Abstract
Modern Reinforcement Learning (RL) algorithms are able to outperform humans in a wide variety of tasks. Multi-agent reinforcement learning (MARL) settings present additional challenges, and successful cooperation in mixed-motive groups of agents depends on a delicate balancing act between individual and group objectives. Social conventions and norms, often inspired by human institutions, are used as tools for striking this balance.
We examine a fundamental, well-studied social convention that underlies cooperation in animal and human societies: dominance hierarchies.
We adapt the ethological theory of dominance hierarchies to artificial agents, borrowing the established terminology and definitions with as few amendments as possible. We demonstrate that populations of RL agents, operating without explicit programming or intrinsic rewards, can invent, learn, enforce, and transmit a dominance hierarchy to new populations. The dominance hierarchies that emerge have a similar structure to those studied in chickens, mice, fish, and other species.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The code and its manual are available at https://github.com/cool-RR/chicken-coop.
References
Aroca-Ouellette, S., Aroca-Ouellette, M., Biswas, U., Kann, K., Roncone, A.: Hierarchical reinforcement learning for ad hoc teaming. In: Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems, pp. 2337–2339 (2023)
Bakker, M.A., et al.: Modelling cooperation in network games with spatio-temporal complexity (2021)
Bonanni, R., Cafazzo, S., Abis, A., Barillari, E., Valsecchi, P., Natoli, E.: Age-graded dominance hierarchies and social tolerance in packs of free-ranging dogs. Behav. Ecol. 28(4), 1004–1020 (2017)
Bowles, S.: Did warfare among ancestral hunter-gatherers affect the evolution of human social behaviors? Science 324(5932), 1293–1298 (2009)
Boyd, R., Richerson, P.J.: Culture and the evolution of human cooperation. Philos. Trans. R. Soc. B: Biol. Sci. 364(1533), 3281–3288 (2009)
CGI Team: Learning robust real-time cultural transmission without human data. arXiv preprint arXiv:2203.00715 (2022)
Chase, I., Bartolomeo, C., Dugatkin, L.: Aggressive interactions and inter-contest interval: how long do winners keep winning? Anim. Behav. 48(2), 393–400 (1994)
Chase, I., Coelho, D., Lee, W., Mueller, K., Curley, J.: Networks never rest: an investigation of network evolution in three species of animals. Soc. Netw. 68, 356–373 (2022)
Chase, I., Tovey, C., Spangler-Martin, D., Manfredonia, M.: Individual differences versus social dynamics in the formation of animal dominance hierarchies. Proc. Natl. Acad. Sci. 99(8), 5744–5749 (2002)
Chen Zeng, T., Cheng, J.T., Henrich, J.: Dominance in humans. Philos. Trans. R. Soc. B 377(1845), 20200451 (2022)
Couzin, I.D.: Collective cognition in animal groups. Trends Cogn. Sci. 13(1), 36–43 (2009)
Dafoe, A., et al.: Open problems in cooperative AI (2020)
David, B.O., Stoffels, R.J.: Spatial organisation and behavioural interaction of giant kokopu (galaxias argenteus) in two stream pools differing in fish density. New Zealand Journal of Marine and Freshwater Research (2003)
De Vries, H.: An improved test of linearity in dominance hierarchies containing unknown or tied relationships. Anim. Behav. 50(5), 1375–1389 (1995)
De Vries, H.: Finding a dominance order most consistent with a linear hierarchy: a new procedure and review. Anim. Behav. 55(4), 827–843 (1998)
Du, Y., Li, S., Torralba, A., Tenenbaum, J.B., Mordatch, I.: Improving factuality and reasoning in language models through multiagent debate. arXiv preprint arXiv:2305.14325 (2023)
Duéñez-Guzmán, E.A., et al.: Statistical discrimination in learning agents. arXiv preprint arXiv:2110.11404 (2021)
Dugatkin, L.A.: Winner and loser effects and the structure of dominance hierarchies. Behav. Ecol. 8(6), 583–587 (1997)
Dugatkin, L.A.: Bystander effects and the structure of dominance hierarchies. Behav. Ecol. 12(3), 348–352 (2001)
Essler, J., Cafazzo, S., Marshall-Pescini, S., Virányi, Z., Kotrschal, K., Range, F.: Play behavior in wolves: Using the ‘50:50’ rule to test for egalitarian play styles. PLoS ONE 11(5), e0154150 (2016)
Foerster, J., Chen, R.Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., Mordatch, I.: Learning with opponent-learning awareness. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pp. 122–130, AAMAS ’18, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2018)
Gavrilets, S., Duéñez-Guzmán, E.A., Vose, M.D.: Dynamics of alliance formation and the egalitarian revolution. PLoS ONE 3(10), e3293 (2008)
Gordon, D.M.: The organization of work in social insect colonies. Nature 380(6570), 121–124 (1996)
Halevy, N., Chou, E.Y., Cohen, T.R., Livingston, R.W.: Status conferral in intergroup social dilemmas: behavioral antecedents and consequences of prestige and dominance. J. Pers. Soc. Psychol. 102(2), 351 (2012)
Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially observable stochastic games. In: AAAI, vol. 4, pp. 709–715 (2004)
Hemelrijk, C.: Dominance interactions, spatial dynamics and emergent reciprocity in a virtual world. In: The 4th International Conference on Simulation of Adaptive Behavior, vol. 4, pp. 545–552, Citeseer (1996)
Hemelrijk, C.: Social phenomena emerging by self-organisation in a competitive, virtual world (“domworld”). In: Learning to behave Workshop II: Internalising knowledge. Ieper, Belgium, pp. 11–19 (2000)
Henazi, S.P., Barrett, L.: The value of grooming to female primates. Primates 40, 47–59 (1999)
Iverson, G.J., Sade, D.S.: Statistical issues in the analysis of dominance hierarchies in animal societies. J. Quant. Anthropol. 2(1), 61–83 (1990)
Kraus, S.: Negotiation and cooperation in multi-agent environments. Artif. Intell. 94(1), 79–97 (1997). ISSN 0004-3702, https://doi.org/10.1016/S0004-3702(97)00025-8, economic Principles of Multi-Agent Systems
Leibo, J.Z., Zambaldi, V., Lanctot, M., Marecki, J., Graepel, T.: Multi-agent reinforcement learning in sequential social dilemmas. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 464–473, AAMAS ’17, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2017)
Leimar, O.: The evolution of social dominance through reinforcement learning. Am. Nat. 197(5), 560–575 (2021)
Li, C., Gan, Z., Yang, Z., Yang, J., Li, L., Wang, L., Gao, J.: Multimodal foundation models: From specialists to general-purpose assistants (2023)
Liang, E., et al.: RLlib: Abstractions for distributed reinforcement learning (2018)
Liang, T., et al.: Encouraging divergent thinking in large language models through multi-agent debate. arXiv preprint arXiv:2305.19118 (2023)
Lu, C., Willi, T., De Witt, C.A.S., Foerster, J.: Model-free opponent shaping. In: International Conference on Machine Learning, pp. 14398–14411, PMLR (2022)
Magee, J.C., Galinsky, A.D.: Social hierarchy: the self-reinforcing nature of power and status. Acad. Manag. Ann. 2, 351–398 (2008)
Mordatch, I., Abbeel, P.: Emergence of grounded compositional language in multi-agent populations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Muthukrishna, M., Henrich, J.: Innovation in the collective brain. Ph. Transactions of the Royal Society B: Biological Sciences 371(1690) (2016)
Przepiorka, W., Rutten, C., Buskens, V., Szekely, A.: How dominance hierarchies emerge from conflict: a game theoretic model and experimental evidence. Soc. Sci. Res. 86, 102393 (2020)
Radke, D., Larson, K., Brecht, T., Tilbury, K.: Towards a better understanding of learning with multiagent teams. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, pp. 271–279, ijcai.org (2023). https://doi.org/10.24963/ijcai.2023/31
Ramchurn, S.D., Mezzetti, C., Giovannucci, A., Rodriguez-Aguilar, J.A., Dash, R.K., Jennings, N.R.: Trust-based mechanisms for robust and efficient task allocation in the presence of execution uncertainty. J. Artif. Intell. Res. 35, 119–159 (2009)
Rapoport, A.: Outline of a probabilistic approach to animal sociology: I. Bull. Math. Biophys. 11, 183–196 (1949)
Rapoport, A., Chammah, A.M.: The game of chicken. Am. Behav. Sci. 10(3), 10–28 (1966)
Reeves, B., Nass, C.: The media equation: How people treat computers, television, and new media like real people. Cambridge, UK 10(10) (1996)
Samuels, A., Silk, J.B., Altmann, J.: Continuity and change in dominance relations among female baboons. Anim. Behav. 35(3), 785–793 (1987)
Sanders, N.J., Gordon, D.M.: Resource-dependent interactions and the organization of desert ant communities. Ecology 84(4), 1024–1031 (2003)
Schjelderup-Ebbe, T.: Beiträge zur sozialpsychologie des haushuhns. Zeitschrift für Psychologie und Physiologie der Sinnesorgane. Abt. 1. Zeitschrift für Psychologie 88, 225 (1922)
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)
Smith, J.M., Price, G.R.: The logic of animal conflict. Nature 246(5427), 15–18 (1973)
Strauss, E.D., Shizuka, D.: The dynamics of dominance: open questions, challenges and solutions. Philos. Trans. R. Soc. B 377(1845), 20200445 (2022)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA (2018) 0262039249
Tomlinson, B., Blumberg, B., Rhodes, B.: How is an agent like a wolf?: Dominance and submission in multi-agent systems. In: International ICSC Symposium on Multi-Agents and Mobile Agents in Virtual Organizations and E-Commerce (MAMA’2000) (2000)
Tufano, M., Agarwal, A., Jang, J., Moghaddam, R.Z., Sundaresan, N.: AutoDev: Automated AI-driven development (2024)
Vezhnevets, A.S., et al.: Generative agent-based modeling with actions grounded in physical, social, or digital space using concordia (2023)
Vinitsky, E., et al.: A learning agent that acquires social norms from public sanctions in decentralized multi-agent settings. Collective Intell. 2(2) (2023). https://doi.org/10.1177/26339137231162025
Watson, J.R.: Dominance-subordination in caged groups of house sparrows. The Wilson Bulletin, pp. 268–278 (1970)
Williamson, C.M., Lee, W., Romeo, R.D., Curley, J.P.: Social context-dependent relationships between mouse dominance rank and plasma hormone levels. Physiol. Behavior 171, 110–119 (2017)
Woolley, A.W., Chabris, C.F., Pentland, A., Hashmi, N., Malone, T.W.: Evidence for a collective intelligence factor in the performance of human groups. Science 330(6004), 686–688 (2010)
Wu, Q., et al.: AutoGen: Enabling next-gen LLM applications via multi-agent conversation (2023)
Xi, Z., et al.: The rise and potential of large language model based agents: A survey (2023)
Xu, Y., Deng, Z., Wang, M., Xu, W., So, A.M.C., Cui, S.: Voting-based multi-agent reinforcement learning for intelligent IoT (2020)
Zhan, S., Bendapudi, N., Hong, Y.y.: Re-examining diversity as a double-edged sword for innovation process. J. Organ. Behav. 36(7), 1026–1049 (2015)
Acknowledgments
We thank the following colleagues for their advice and support in writing this paper: David Aha, Ivan Chase, Edgar Duéñez-Guzmán, Errol King, Joel Leibo, Olof Leimar, David Manheim, Markov, Georg Ostrovski, Jérémy Perret, Saul Pwanson, Venkatesh Rao and Eli Strauss. This research was funded by The Association For Long Term Existence And Resilience (ALTER).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rachum, R., Nakar, Y., Tomlinson, B., Alon, N., Mirsky, R. (2025). Emergent Dominance Hierarchies in Reinforcement Learning Agents. In: Cranefield, S., Nardin, L.G., Lloyd, N. (eds) Coordination, Organizations, Institutions, Norms, and Ethics for Governance of Multi-Agent Systems XVII. COINE 2024. Lecture Notes in Computer Science(), vol 15398. Springer, Cham. https://doi.org/10.1007/978-3-031-82039-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-82039-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82038-0
Online ISBN: 978-3-031-82039-7
eBook Packages: Computer ScienceComputer Science (R0)