Abstract
We investigate the effectiveness of ChatGPT in extracting norms from contracts. Norms provide a natural way to engineer multiagent systems by capturing how to govern the interactions between two or more autonomous parties. We extract norms of commitment, prohibition, authorization, and power, along with associated norm elements (the parties involved, antecedents, and consequents) from contracts. Our investigation reveals ChatGPT’s effectiveness and limitations in norm extraction from contracts. ChatGPT demonstrates promising performance in norm extraction without requiring training or fine-tuning, thus obviating the need for annotated data, which is not generally available in this domain. However, we found some limitations of ChatGPT in extracting these norms that lead to incorrect norm extractions. The limitations include oversight of crucial details, hallucination, incorrect parsing of conjunctions, and inferring incorrect norm types and elements. Enhanced norm extraction from contracts can foster the development of more transparent and trustworthy formal agent interaction specifications, thereby contributing to improving multiagent systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aires, J.P., Meneguzzi, F.: Norm conflict identification using a convolutional neural network. In: International Workshops on Coordination, Organizations, Institutions, Norms, and Ethics (COINE) for Governance of Multi-Agent Systems XIII, LNCS, vol. 12298, pp. 3–19, Springer (2020). https://doi.org/10.1007/978-3-030-72376-7_1
AlAfnan, M.A., Dishari, S., Jovic, M., Lomidze, K.: ChatGPT as an educational tool: opportunities, challenges, and recommendations for communication, business writing, and composition courses. J. Artif. Intell. Technol. 3(2), 60–68 (2023). https://doi.org/10.37965/jait.2023.0184
Ali, S.R., Dobbs, T.D., Hutchings, H.A., Whitaker, I.S.: Using ChatGPT to write patient clinic letters. Lancet Digital Health 5(4), e179–e181 (2023). https://doi.org/10.1016/S2589-7500(23)00048-1
Baidoo-Anu, D., Owusu Ansah, L.: Education in the era of generative artificial intelligence (AI): understanding the potential benefits of ChatGPT in promoting teaching and learning. J. AI 7(1), 52–62 (2023). https://doi.org/10.61969/jai.1337500
Bubeck, S., et al.: Sparks of artificial general intelligence: early experiments with GPT-4. arXiv preprint arXiv:2303.12712 (2023)
Chalkidis, I., Androutsopoulos, I., Michos, A.: Obligation and prohibition extraction using hierarchical RNNs. In: Gurevych, Iryna and Miyao, Yusuke (ed.) Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 254–259, Association for Computational Linguistics, Melbourne, Australia (2018). https://doi.org/10.18653/v1/P18-2041
Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Androutsopoulos, I.: Neural contract element extraction revisited. In: Workshop on Document Intelligence at NeurIPS 2019 (2019). https://openreview.net/forum?id=B1x6fa95UH
Chopra, A.K., Singh, M.P.: Custard: computing norm states over information stores. In: Proceedings of the 15th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1096–1105, IFAAMAS, Singapore (2016). https://doi.org/10.5555/2936924.2937085
Chopra, A.K., Singh, M.P.: Accountability as a foundation for requirements in sociotechnical systems. IEEE Internet Comput. (IC) 25(6), 33–41 (2021). https://doi.org/10.1109/MIC.2021.3106835
Christie V, S.H., Chopra, A.K., Singh, M.P.: Hercule: representing and reasoning about norms as a foundation for declarative contracts over blockchain. IEEE Internet Comput. (IC) 25(4), 67–75 (2021). https://doi.org/10.1109/MIC.2021.3080982
Cox, C., Tzoc, E.: ChatGPT: implications for academic libraries. Coll. Res. Libr. News 84(3), 99 (2023). https://doi.org/10.5860/crln.84.3.99
Curtotti, M., McCreath, E.: Corpus based classification of text in Australian contracts. In: Indurkhya, N., Zwarts, S. (eds.) Proceedings of the Australasian Language Technology Association Workshop 2010, pp. 18–26, Melbourne, Australia (2010). URL https://aclanthology.org/U10-1005
D’Agostini Bueno, T.C., Von Wangenheim, C.G., Da Silva Mattos, E., Hoeschl, H.C., Barcia, R.M.: Jurisconsulto: retrieval in jurisprudencial text bases using juridical terminology. In: Proceedings of the 7th International Conference on Artificial Intelligence and Law, pp. 147–155. ICAIL, Association for Computing Machinery, New York, NY, USA (1999). https://doi.org/10.1145/323706.323789
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 17th Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 4171–4186, Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423
Gao, X., Singh, M.P.: Extracting normative relationships from business contracts. In: International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS, Paris, France, May 5-9, 2014, pp. 101–108, IFAAMAS/ACM (2014). http://dl.acm.org/citation.cfm?id=2615751
Gao, X., Singh, M.P.: Mining contracts for business events and temporal constraints in service engagements. IEEE Trans. Serv. Comput. 7(3), 427–439 (2014). https://doi.org/10.1109/TSC.2013.21
George, A.S., George, A.S.H.: A review of ChatGPT AI’s impact on several business sectors. Partners Univers. Int. Innovation J. 1(1), 9–23 (2023). https://doi.org/10.5281/zenodo.7644359
Hashmi, M.: A methodology for extracting legal norms from regulatory documents. In: 2015 IEEE 19th International Enterprise Distributed Object Computing Workshop, pp. 41–50 (2015). https://doi.org/10.1109/EDOCW.2015.29
Hendrycks, D., Burns, C., Chen, A., Ball, S.: CUAD: an expert-annotated NLP dataset for legal contract review. In: Vanschoren, J., Yeung, S. (eds.) Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks, December 2021 (2021). https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/6ea9ab1baa0efb9e19094440c317e21b-Abstract-round1.html
Howard, A., Hope, W., Gerada, A.: ChatGPT and antimicrobial advice: the end of the consulting infection doctor? Lancet. Infect. Dis. 23(4), 405–406 (2023)
Jalil, S., Rafi, S., LaToza, T.D., Moran, K., Lam, W.: ChatGPT and software testing education: promises & perils. In: IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), pp. 4130–4137 (2023). https://doi.org/10.1109/ICSTW58534.2023.00078
Kafalı, Ö., Ajmeri, N., Singh, M.P.: Desen: specification of sociotechnical systems via patterns of regulation and control. ACM Trans. Softw. Eng. Methodol. (TOSEM) 29(1), 7:1–7:50 (2020). https://doi.org/10.1145/3365664
Kampik, T., et al.: Governance of autonomous agents on the web: challenges and opportunities. ACM Trans. Internet Technol. (TOIT) 22(4), 104:1–104:31 (2022). https://doi.org/10.1145/3507910
Kashefi, A., Mukerji, T.: ChatGPT for programming numerical methods. J. Mach. Learn. Model. Comput. 4(2), 1–74 (2023)
Kasneci, E., et al.: ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 103, 102274 (2023). https://doi.org/10.1016/j.lindif.2023.102274
Khan, R.A., Jawaid, M., Khan, A.R., Sajjad, M.: ChatGPT - reshaping medical education and clinical management. Pak. J. Med. Sci. 39(2), 605–607 (2023). https://doi.org/10.12669/pjms.39.2.7653
Kiyavitskaya, N., et al.: Automating the extraction of rights and obligations for regulatory compliance. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 154–168. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87877-3_13
Koreeda, Y., Manning, C.: ContractNLI: a dataset for document-level natural language inference for contracts. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1907–1919. Association for Computational Linguistics, Punta Cana, Dominican Republic (2021). https://doi.org/10.18653/v1/2021.findings-emnlp.164
Lee, J., Yi, J.S., Son, J.: Development of automatic-extraction model of poisonous clauses in international construction contracts using rule-based NLP. J. Comput. Civ. Eng. 33(3), 04019003 (2019). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000807
Leivaditi, S., Rossi, J., Kanoulas, E.: A benchmark for lease contract review. arXiv preprint arXiv:2010.10386 (2020)
Lippi, M., et al.: Automated detection of unfair clauses in online consumer contracts. In: Legal Knowledge and Information Systems - JURIX 2017: The 13th Annual Conference, Luxembourg, 13-15, Frontiers in Artificial Intelligence and Applications, vol. 302, pp. 145–154. IOS Press (2017). https://doi.org/10.3233/978-1-61499-838-9-145
Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Mahala, G., Kafalı, Ö., Dam, H.K., Ghose, A., Singh, M.P.: A normative approach for resilient multiagent systems. JAAMAS 37(2), 46:1–46:40 (2023). https://doi.org/10.1007/s10458-023-09627-4
Mamakas, D., Tsotsi, P., Androutsopoulos, I., Chalkidis, I.: Processing long legal documents with pre-trained transformers: modding LegalBERT and longformer. In: Proceedings of the Natural Legal Language Processing Workshop 2022, pp. 130–142. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates (Hybrid) (2022). https://doi.org/10.18653/v1/2022.nllp-1.11
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training. OpenAI (2018). https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners, Technical report, Open AI (2019). https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable questions for SQuAD. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 784–789. Association for Computational Linguistics, Melbourne, Australia (2018). https://doi.org/10.18653/v1/P18-2124
Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine comprehension of text. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1264
Sainani, A., Anish, P.R., Joshi, V., Ghaisas, S.: Extracting and classifying requirements from software engineering contracts. In: IEEE 28th International Requirements Engineering Conference (RE), pp. 147–157 (2020). https://doi.org/10.1109/RE48521.2020.00026
Sallam, M.: ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns. Healthcare 11(6) (2023). https://doi.org/10.3390/healthcare11060887
Sharifi, S., Parvizimosaed, A., Amyot, D., Logrippo, L., Mylopoulos, J.: Symboleo: towards a specification language for legal contracts. In: 2020 IEEE 28th International Requirements Engineering Conference (RE), pp. 364–369 (2020). https://doi.org/10.1109/RE48521.2020.00049
Singh, M.P.: Norms as a basis for governing sociotechnical systems. ACM Trans. Intell. Syst. Technol. (TIST) 5(1), 21:1–21:23 (2013). https://doi.org/10.1145/2542182.2542203
Singh, M.P., Chopra, A.K.: Computational governance and violable contracts for blockchain applications. IEEE Comput. 53(1), 53–62 (2020). https://doi.org/10.1109/MC.2019.2947372
Singh, M.P., Gao, X.: A gray box conceptual model for accountability and ethics in business contracts. IEEE Internet Comput. (IC) 25(4), 13–19 (2021). https://doi.org/10.1109/MIC.2021.3083295
Sleimi, A., Sannier, N., Sabetzadeh, M., Briand, L.C., Ceci, M., Dann, J.: An automated framework for the extraction of semantic legal metadata from legal texts. Empir. Softw. Eng. 26(3), 43 (2021). https://doi.org/10.1007/S10664-020-09933-5
Taecharungroj, V.: What can ChatGPT do? Analyzing early reactions to the innovative AI chatbot on twitter. Big Data Cogn. Comput. 7(1) (2023). https://doi.org/10.3390/bdcc7010035
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Long Beach, CA (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Von Wright, G.H.: Norm and action: a logical enquiry. In: International Library of Philosophy and Scientific Method. Humanities Press, New York (1963)
Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.: GLUE: a multi-task benchmark and analysis platform for natural language understanding. In: Proceedings of the EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355. Association for Computational Linguistics, Brussels, Belgium (2018). https://doi.org/10.18653/v1/W18-5446
Williams, A., Nangia, N., Bowman, S.: A broad-coverage challenge corpus for sentence understanding through inference. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1112–1122. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-1101
Xu, W., Deng, Y., Lei, W., Zhao, W., Chua, T.S., Lam, W.: ConReader: exploring implicit relations in contracts for contract clause extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 2581–2594. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates (2022). https://doi.org/10.18653/v1/2022.emnlp-main.166
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc., Vancouver (2019). https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
Acknowledgments
Thanks to the US NSF (grant IIS-1908374) for support for this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Haque, A., Singh, M.P. (2025). Extracting Norms from Contracts Via ChatGPT. In: Cranefield, S., Nardin, L.G., Lloyd, N. (eds) Coordination, Organizations, Institutions, Norms, and Ethics for Governance of Multi-Agent Systems XVII. COINE 2024. Lecture Notes in Computer Science(), vol 15398. Springer, Cham. https://doi.org/10.1007/978-3-031-82039-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-82039-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82038-0
Online ISBN: 978-3-031-82039-7
eBook Packages: Computer ScienceComputer Science (R0)