Abstract
The proliferation of data from IoT devices has introduced challenges for efficient and accurate information retrieval in distributed Cloud Data Centers. This paper presents a Hybrid Distributed Information Retrieval (H-DIR) model optimized for IoT environments using advanced semantics and a hybrid query approach. The model aims to improve retrieval precision and efficiency by leveraging semantic concepts and contextual metadata, while also enhancing security and data privacy. Applied in a real industrial setting for gardening services, the H-DIR model demonstrates potential to increase revenue through economic quantification of services and value creation via faster preventive measures.
D. Tosi and R. Pazzi—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Basset, M., Shawky, L.A., Eldrandaly, K.: Grid quorum-based spatial coverage for IoT smart agriculture monitoring using enhanced multi-verse optimizer. Neural Comput. Appl. 32, 607–624 (2020)
Al-Osta, M., Ahmed, B., Abdelouahed, G.: A lightweight semantic web-based approach for data annotation on IoT gateways. Procedia Comput. Sci. 113, 186–193 (2017)
Androcec, D., Vrcek, N.: Thing as a service interoperability: review and framework proposal. In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 309–316 (2016). https://api.semanticscholar.org/CorpusID:10086259
Anjana, P., Narayanamoorthi, M.: Secured natural language processing for conversion of unstructured text into structured intelligence. In: 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 957–962. IEEE (2021)
Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1383–1394 (2015)
Astutik, Y., Murad, M., Putra, G.M.D., Setiawati, D.A.: Remote monitoring systems in greenhouse based on NodeMCU esp8266 microcontroller and android. In: AIP Conference Proceedings, vol. 2199. AIP Publishing (2019)
Bhamidipaty, A., Khabiri, E., Agrawal, B., Li, Y.: SiWare: contextual understanding of industrial data for situational awareness. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, pp. 7115–7118 (2023)
Duy, T.K., Quirchmayr, G., Tjoa, A., Hanh, H.H.: A semantic data model for the interpretion of environmental streaming data. In: 2017 Seventh International Conference on Information Science and Technology (ICIST), pp. 376–380. IEEE (2017)
Górka, W., Socha, M., Piasecki, A.: The use of D2RQ in the integration of development tools. Studia Ekonomiczne 308, 62–73 (2016)
Hassan, M., Bansal, S.: Semantic data querying over NoSQL databases with apache spark. In: 2018 IEEE International Conference on Information Reuse and Integration (IRI), pp. 364–371 (2018). https://doi.org/10.1109/IRI.2018.00061
Hassan, M., Bansal, S.: S3QLRDF: distributed sparql query processing using apache spark-a comparative performance study. Distrib. Parallel Databases, 1–41 (2023). https://doi.org/10.1007/s10619-023-07422-4
Kamilaris, A., Gao, F., Prenafeta-Boldu, F.X., Ali, M.I.: Agri-IoT: a semantic framework for internet of things-enabled smart farming applications. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 442–447. IEEE (2016)
Kang, Z., Huang, Z., Lu, C.: Speech enhancement using U-Net with compressed sensing. Appl. Sci. (2022). https://api.semanticscholar.org/CorpusID:248339213
Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., Talwar, K.: Semi-supervised knowledge transfer for deep learning from private training data. arXiv preprint arXiv:1610.05755 (2016)
Qu, C., Tao, M., Zhang, J., Hong, X., Yuan, R.: A semantic web based intelligent IoT model. In: Vaidya, J., Li, J. (eds.) ICA3PP 2018. LNCS, vol. 11336, pp. 186–195. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05057-3_14
Sahay, M.R., Sukumaran, M.K., Amarnath, S., Palani, T.N.D.: Environmental monitoring system using iot and cloud service at real-time. EasyChair Preprint 5(968), 1–8 (2019)
Salama, A., Shaheen, M.E., Al-Feel, H.: Semantic architecture for modelling and reasoning IoT data resources based on spark. Int. J. Adv. Comput. Sci. Appl. 11(2), 431–438 (2020)
Samuel, K., et al.: Translating owl and semantic web rules into prolog: moving toward description logic programs. Theory Pract. Logic Program. 8(3), 301–322 (2008)
Sharma, S., Sharma, A., Goel, T., Deoli, R., Mohan, S.: Smart home gardening management system: a cloud-based internet-of-things (IoT) application in VANET. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–5. IEEE (2020)
Shi, J., et al.: Generalized deep mixed models. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3869–3877 (2022)
Su, X., Zhang, H., Riekki, J., Keränen, A., Nurminen, J.K., Du, L.: Connecting IoT sensors to knowledge-based systems by transforming SenML to RDF. Procedia Comput. Sci. 32, 215–222 (2014)
Vandana, C., Chikkamannur, A.A.: Semantic ontology based IoT-resource description. Int. J. Adv. Netw. Appl. 11(1), 4184–4189 (2019)
Wan, J., Liu, J., Liao, L.: Guest editorial: special issue on “advanced artificial intelligence for industrial internet of things’’. J. Internet Technol. 21(5), 1477–1478 (2020)
Wang, B., Kong, W., Guan, H., Xiong, N.N.: Air quality forecasting based on gated recurrent long short term memory model in internet of things. IEEE Access 7, 69524–69534 (2019)
Wang, W., Barnaghi, P., Cassar, G., Ganz, F., Navaratnam, P.: Semantic sensor service networks. In: SENSORS, 2012 IEEE, pp. 1–4. IEEE (2012)
Xiao-lin, S.: Design and implementation of reasoning system based on description logic. J. Chin. Comput. Syst. 29, 57–60 (2008)
Zhang, X., Zhao, Y., Liu, W.: Transforming sensor data to RDF based on SSN ontology. Adv. Sci. Technol. Lett. 81, 95–98 (2015)
Acknowledgements
This work was supported in part by project SERICS (PE00000014) under the NRRP MUR program funded by the EU - NGEU.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 IFIP International Federation for Information Processing
About this paper
Cite this paper
Tosi, D., Pazzi, R. (2025). Design and Experimentation of a Distributed Information Retrieval-Hybrid Architecture in Cloud IoT Data Centers. In: Rey, G., Tigli, JY., Franquet, E. (eds) Internet of Things. 7th IFIPIoT 2024 International IFIP WG 5.5 Workshops. IFIPIoT 2024. IFIP Advances in Information and Communication Technology, vol 738. Springer, Cham. https://doi.org/10.1007/978-3-031-82065-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-82065-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82064-9
Online ISBN: 978-3-031-82065-6
eBook Packages: Computer ScienceComputer Science (R0)