Skip to main content

SINDIT: A Framework for Knowledge Graph-Based Digital Twins in Smart Manufacturing

  • Conference paper
  • First Online:
Internet of Things. 7th IFIPIoT 2024 International IFIP WG 5.5 Workshops (IFIPIoT 2024)

Abstract

Digital twins are revolutionizing smart manufacturing by facilitating real-time monitoring, simulation, and optimization of physical processes. This paper introduces the SINDIT framework, a comprehensive approach tailored for developing knowledge graph-based digital twins. By seamlessly integrating cognitive capabilities, SINDIT enhances decision-making and operational efficiency within manufacturing systems. Central to its architecture is a robust data pipeline, adept at organizing and linking vast amounts of heterogeneous data, thereby enabling advanced data analytics and reasoning.

Case studies from the pilots of the COGNIMAN project underscore the practical utility and benefits of the SINDIT framework. These studies showcase notable enhancements in predictive maintenance, process optimization, and overall productivity. By harnessing the power of knowledge graphs and cognitive capabilities, SINDIT represents a promising avenue for driving innovation and efficiency in smart manufacturing. Through this framework, manufacturers can achieve a higher level of operational insight and agility, leading to improved performance and competitiveness in the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cogniman.eu/.

  2. 2.

    https://eclipse-esmf.github.io/.

  3. 3.

    https://cdd.iec.ch/.

  4. 4.

    https://eclass.eu.

  5. 5.

    https://www.influxdata.com/.

  6. 6.

    https://min.io/.

  7. 7.

    https://www.hashicorp.com/products/vault.

  8. 8.

    https://graphdb.ontotext.com/.

  9. 9.

    https://github.com/SINTEF-9012/SINDIT.

  10. 10.

    https://www.fischertechnik.de.

  11. 11.

    https://sindit.sintef.cloud/.

References

  1. Amazon Web Services: Amazon TwinMaker. https://aws.amazon.com/iot-twinmaker/features/. Accessed 07 June 2024

  2. Ansys: Ansys twin builder. https://www.ansys.com/products/digital-twin/ansys-twin-builder. Accessed 26 June 2024

  3. Bader, S., Barnstedt, E., Bedenbender, H., Berres, B., Billmann, M., Ristin, M.: Details of the asset administration shell-part 1: the exchange of information between partners in the value chain of industrie 4.0 (version 3.0 rc02). Technical report, Federal Ministry for Economic Affairs and Climate Action (BMWK) (2022)

    Google Scholar 

  4. Eclipse Foundation: Eclipse ditto. https://eclipse.dev/ditto/. Accessed 26 June 2024

  5. Eclipse Foundation: Eclipse vorto (2024). https://eclipse.dev/vorto/. Accessed 26 June 2024

  6. Fei, T., et al.: makeTwin: a reference architecture for digital twin software platform. Chin. J. Aeronaut. 37(1), 1–18 (2024)

    Article  MATH  Google Scholar 

  7. Ghobakhloo, M.: Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 252, 119869 (2020)

    Google Scholar 

  8. Kamburjan, E., Klungre, V.N., Schlatte, R., Johnsen, E.B., Giese, M.: Programming and debugging with semantically lifted states. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 126–142. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_8

    Chapter  Google Scholar 

  9. Keaveney, S., Shmeliov, A., Nicolosi, V., Dowling, D.P.: Investigation of process by-products during the selective laser melting of ti6al4v powder. Addit. Manuf. 36, 101514 (2020). https://doi.org/10.1016/j.addma.2020.101514. https://www.sciencedirect.com/science/article/pii/S2214860420308861

  10. Lam, A.N., Elvesæter, B., Martín-Recuerda, F.: Evaluation of a representative selection of SPARQL query engines using wikidata. In: European Semantic Web Conference, pp. 679–696. Springer, Cham (2023)

    Google Scholar 

  11. Lam, A.N., Haugen, Ø.: Implementing OPC-UA services for industrial cyber-physical systems in service-oriented architecture. In: IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 5486–5492. IEEE (2019)

    Google Scholar 

  12. Masse, M.: REST API design rulebook: designing consistent RESTful web service interfaces. “O’Reilly Media, Inc.” (2011)

    Google Scholar 

  13. Microsoft: Azure Digital Twins. https://learn.microsoft.com/en-us/azure/digital-twins/overview. Accessed 07 June 2024

  14. Nguyen, T., Lam, A.N., Nguyen, P., Truong, L.: Security orchestration with explainability for digital twins-based smart systems. In: IEEE Annual Computer Software and Applications Conference (2024)

    Google Scholar 

  15. Otto, B., ten Hompel, M., Wrobel, S.: Designing Data Spaces: The Ecosystem Approach to Competitive Advantage. Springer, Cham (2022)

    Google Scholar 

  16. Peter, T.: Introducing cognition to digital twins through knowledge graphs and similarity measures. Master’s thesis, Institut für Software & Systems Engineering, University of Augsburg, Augsburg, Germany (2022)

    Google Scholar 

  17. PTC: PTC ThingWorx IoT Platform. https://www.ptc.com/en/products/thingworx/. Accessed 07 June 2024

  18. Quincozes, S., Emilio, T., Kazienko, J.: MQTT protocol: fundamentals, tools and future directions. IEEE Lat. Am. Trans. 17(09), 1439–1448 (2019)

    Article  Google Scholar 

  19. Renishaw: Infiniam spectral (2024). https://www.renishaw.com/resourcecentre/en/details?data=103148. Accessed 06 Aug 2024

  20. Siemens: Insights hub. https://plm.sw.siemens.com/en-US/insights-hub/. Accessed 26 June 2024

  21. Soori, M., Arezoo, B., Dastres, R.: Digital twin for smart manufacturing, a review. Sustain. Manuf. Serv. Econ. 100017 (2023)

    Google Scholar 

  22. Talasila, P., Gomes, C., Mikkelsen, P.H., Arboleda, S.G., Kamburjan, E., Larsen, P.G.: Digital twin as a service (DTAAS): a platform for digital twin developers and users. In: 2023 IEEE Smart World Congress (SWC), pp. 1–8. IEEE (2023)

    Google Scholar 

  23. ThingsBoard Inc.: Thingsboard. https://thingsboard.io/docs/. Accessed 07 June 2024

  24. Wang, B., et al.: Human digital twin in the context of industry 5.0. Robot. Comput.-Integr. Manuf. 85, 102626 (2024)

    Google Scholar 

  25. Waszak, M., Lam, A.N., Hoffmann, V., Elvesæter, B., Mogos, M.F., Roman, D.: Let the asset decide: digital twins with knowledge graphs. In: 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C), pp. 35–39. IEEE (2022)

    Google Scholar 

Download references

Acknowledgments

This work has been co-funded by the European Commission Project COGNIMAN (grant agreement No. 101058477) and the SINTEF SEP Project SINDIT 2.0. The work on the Fischertechnik factory was primarily conducted by Timo Peter during his internship at SINTEF, under the supervision of Maryna Waszak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Ngoc Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lam, A.N. et al. (2025). SINDIT: A Framework for Knowledge Graph-Based Digital Twins in Smart Manufacturing. In: Rey, G., Tigli, JY., Franquet, E. (eds) Internet of Things. 7th IFIPIoT 2024 International IFIP WG 5.5 Workshops. IFIPIoT 2024. IFIP Advances in Information and Communication Technology, vol 738. Springer, Cham. https://doi.org/10.1007/978-3-031-82065-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82065-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82064-9

  • Online ISBN: 978-3-031-82065-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics