Skip to main content

Threats to the IoT Device Production Processes – A Blind Spot in the Product Security Lifecycle

  • Conference paper
  • First Online:
Internet of Things. 7th IFIPIoT 2024 International IFIP WG 5.5 Workshops (IFIPIoT 2024)

Abstract

The production of embedded and constrained IoT devices is a security-critical but often neglected step in the product security lifecycle. The secure development of devices has become empowered over the last decade via the implementation of DevOps processes. However, the transmission of created artifacts into the production site and onto the device itself is a regularly overlooked procedure in the security assessment. This study shows the complexity and proposes a production model that is split into four stages for analysis. The four stages comprise (1) the transmission of artifacts, (2) the management of artifacts, (3) programming of the device, and (4) provisioning of the IoT device. Assets and threat actors are defined, and critical scenarios are introduced to explain their impact on IoT device production. Concluding, the discussion presents possible approaches and their limitations based on the given variety. In the future, this will facilitate the protection of critical and valuable phases of production, thereby enhancing the security and trustworthiness of IoT devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abiona, O.O., Oladapo, O.J., Modupe, O.T., Oyeniran, O.C., Adewusi, A.O., Komolafe, A.M.: The emergence and importance of DevSecOps: integrating and reviewing security practices within the DevOps pipeline. World J. Adv. Eng. Technol. Sci. 11(2), 127–133 (2024). https://doi.org/10.30574/wjaets.2024.11.2.0093

  2. Akter, S., Khalil, K., Bayoumi, M.: A survey on hardware security: current trends and challenges. IEEE Access 11, 77543–77565 (2023). https://doi.org/10.1109/access.2023.3288696

    Article  Google Scholar 

  3. Al Barazanchi, I.I., Hashim, W., Thabit, R., Sekhar, R., Shah, P., Penubadi, H.R.: Secure trust node acquisition and access control for privacy-preserving expertise trust in WBAN networks, pp. 265–275. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-62881-8_22

  4. Alahi, M.E.E., et al.: Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: recent advancements and future trends. Sensors 23(11), 5206 (2023). https://doi.org/10.3390/s23115206

    Article  MATH  Google Scholar 

  5. Ali, B., Awad, A.I.: Cyber and physical security vulnerability assessment for IoT-based smart homes. Sensors 18(3), 817 (2018). https://doi.org/10.3390/s18030817

    Article  MATH  Google Scholar 

  6. Boeckl, K., et al.: Considerations for managing internet of things (IoT) cybersecurity and privacy risks. US Department of Commerce, National Institute of Standards and Technology (2019). https://doi.org/10.6028/nist.ir.8228

  7. Boyes, H., Hallaq, B., Cunningham, J., Watson, T.: The industrial internet of things (IIoT): an analysis framework. Comput. Ind. 101, 1–12 (2018). https://doi.org/10.1016/j.compind.2018.04.015

    Article  MATH  Google Scholar 

  8. Car, P., De Luca, S.: EU Cyber Resilience Act. EPRS, European Parliament (2022). https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act

  9. Chiara, P.G.: The IoT and the new EU cybersecurity regulatory landscape. Int. Rev. Law Comput. Technol. 36(2), 118–137 (2022). https://doi.org/10.1080/13600869.2022.2060468

    Article  MATH  Google Scholar 

  10. Davis, K.R., Peabody, B., Leach, P.: Universally Unique IDentifiers (UUIDs). No. 9562 in Request for Comments, RFC Editor (2024). https://doi.org/10.17487/rfc9562. https://www.rfc-editor.org/info/rfc9562

  11. Dodson, D., et al.: Securing small business and home internet of things (IoT) devices: mitigating network-based attacks using manufacturer usage description (MUD). National Institute of Standards and Technology (2021). https://doi.org/10.6028/nist.sp.1800-15

  12. Everett, C.: Ransomware: to pay or not to pay? Comput. Fraud Secur. 2016(4), 8–12 (2016). https://doi.org/10.1016/s1361-3723(16)30036-7. https://www.sciencedirect.com/science/article/pii/S1361372316300367

  13. Finney, H., Donnerhacke, L., Callas, J., Thayer, R.L., Shaw, D.: OpenPGP Message Format. RFC 4880 (2007). https://doi.org/10.17487/RFC4880. https://www.rfc-editor.org/info/rfc4880

  14. Force, J.T.: Risk Management Framework for Information Systems and Organizations: A System Life Cycle Approach for Security and Privacy (Discussion Draft). Technical report, National Institute of Standards and Technology (2018). https://csrc.nist.gov/pubs/sp/800/37/r2/final

  15. Gokarna, M., Singh, R.: DevOps: a historical review and future works. In: 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), pp. 366–371. IEEE (2021). https://doi.org/10.1109/icccis51004.2021.9397235

  16. Hacquebord, F., Hilt, S., Sancho, D.: The Near And Far Future Of Ransomware Business Models. Trend Micro Research (2022). https://www.key4biz.it/wp-content/uploads/2022/12/wp-the-near-and-far-future-of-ransomware.pdf

  17. Halak, B.: CIST: a threat modelling approach for hardware supply chain security. In: Halak, B. (ed.) Hardware Supply Chain Security, pp. 3–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62707-2_1

    Chapter  MATH  Google Scholar 

  18. ISO Central Secretary: Cybersecurity – IoT security and privacy – Guidelines. Standard ISO/IEC 27400:2022(E), International Organization for Standardization, Geneva, CH (2022). https://www.iso.org/standard/80136.html

  19. ISO Central Secretary: Cybersecurity – IoT security and privacy – Device baseline requirements. Standard ISO/IEC 27402:2023(E), International Organization for Standardization, Geneva, CH (2023). https://www.iso.org/standard/80136.html

  20. Khalifa, M., Algarni, F., Ayoub Khan, M., Ullah, A., Aloufi, K.: A lightweight cryptography (LWC) framework to secure memory heap in Internet of Things. Alex. Eng. J. 60(1), 1489–1497 (2021). https://doi.org/10.1016/j.aej.2020.11.003

    Article  Google Scholar 

  21. Manogaran, G., Varatharajan, R., Lopez, D., Kumar, P.M., Sundarasekar, R., Thota, C.: A new architecture of internet of things and big data ecosystem for secured smart healthcare monitoring and alerting system. Futur. Gener. Comput. Syst. 82, 375–387 (2018). https://doi.org/10.1016/j.future.2017.10.045

    Article  Google Scholar 

  22. Mayoral-Vilches, V., García-Maestro, N., Towers, M., Gil-Uriarte, E.: DevSecOps in Robotics (2020). https://doi.org/10.48550/ARXIV.2003.10402

  23. McKnight, M.: IoT, industry 4.0, industrial Iot...why connected devices are the future of design. KnE Eng. 2(2), 197 (2017). https://doi.org/10.18502/keg.v2i2.615

  24. Merabet, G.H., et al.: Intelligent building control systems for thermal comfort and energy-efficiency: a systematic review of artificial intelligence-assisted techniques. Renew. Sustain. Energy Rev. 144, 110969 (2021). https://doi.org/10.1016/j.rser.2021.110969

    Article  MATH  Google Scholar 

  25. MITRE: MITRE ATT &CK Framework (2015). https://attack.mitre.org. Accessed 05 Sept 2024

  26. Nzeako, G., Okeke, C.D., Akinsanya, M.O., Popoola, O.A., Chukwurah, E.G.: Security paradigms for IoT in telecom networks: conceptual challenges and solution pathways. Eng. Sci. Technol. J. 5(5), 1606–1626 (2024). https://doi.org/10.51594/estj.v5i5.1111

  27. Parihar, V., Malik, A., Bhawna, Bhushan, B., Chaganti, R.: From smart devices to smarter systems: the evolution of artificial intelligence of things (AIoT) with characteristics, architecture, use cases and challenges, pp. 1–28. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31952-5_1

  28. Pise, A.A., et al.: Enabling artificial intelligence of things (AIoT) healthcare architectures and listing security issues. Comput. Intell. Neurosci. 2022(1), 1–14 (2022). https://doi.org/10.1155/2022/8421434

    Article  MathSciNet  MATH  Google Scholar 

  29. Skouloudi, C., Malatras, A., Naydenov, R., Dede, G.: Guidelines for Securing the Internet of Things. Technical report, European Union Agency for Cybersecurity (ENISA) (2020). https://www.enisa.europa.eu/publications/guidelines-for-securing-the-internet-of-things

  30. Sleem, A., Elhenawy, I.: Survey of artificial intelligence of things for smart buildings: a closer outlook. J. Intell. Syst. Internet Things 8(2), 63–71 (2023). https://doi.org/10.54216/jisiot.080206

  31. Soares, E., Sizilio, G., Santos, J., da Costa, D.A., Kulesza, U.: The effects of continuous integration on software development: a systematic literature review. Empirical Softw. Eng. 27(3) (2022). https://doi.org/10.1007/s10664-021-10114-1

  32. Stahl, D., Martensson, T., Bosch, J.: Continuous practices and devops: beyond the buzz, what does it all mean? In: 2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA). IEEE (2017). https://doi.org/10.1109/seaa.2017.8114695

  33. Tatineni, S.: Compliance and audit challenges in DevOps: a security perspective. Int. Res. J. Mod. Eng. Technol. Sci. 5(10), 1306–1316 (2023). https://doi.org/10.56726/IRJMETS45309

  34. Yousefnezhad, N., Malhi, A., Främling, K.: Security in product lifecycle of IoT devices: a survey. J. Netw. Comput. Appl. 171, 102779 (2020). https://doi.org/10.1016/j.jnca.2020.102779

    Article  MATH  Google Scholar 

  35. Zakerabasali, S., Ayyoubzadeh, S.M.: Internet of things and healthcare system: a systematic review of ethical issues. Health Sci. Rep. 5(6), e863 (2022). https://doi.org/10.1002/hsr2.863

    Article  Google Scholar 

  36. Zhang, J., Tao, D.: Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things. IEEE Internet Things J. 8(10), 7789–7817 (2021). https://doi.org/10.1109/jiot.2020.3039359

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This study was supported by the German Federal Ministry of Education and Research (BMWK) through grant number 16KIS1956.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Schubaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schubaur, P., Knauer, P., Merli, D. (2025). Threats to the IoT Device Production Processes – A Blind Spot in the Product Security Lifecycle. In: Rey, G., Tigli, JY., Franquet, E. (eds) Internet of Things. 7th IFIPIoT 2024 International IFIP WG 5.5 Workshops. IFIPIoT 2024. IFIP Advances in Information and Communication Technology, vol 738. Springer, Cham. https://doi.org/10.1007/978-3-031-82065-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82065-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82064-9

  • Online ISBN: 978-3-031-82065-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics