Skip to main content

Designing User Experience in the Context of Human-Centered AI and Generative Artificial Intelligence: A Systematic Review

  • Conference paper
  • First Online:
Distributed Computing and Artificial Intelligence, 21st International Conference (DCAI 2024)

Abstract

This study presents an assessment of the state-of-the-art based on a systematic literature review methodology, focusing on the problematic relationship between User Experience (UX) design, generative artificial intelligence (GenAI), and human-centered design. It examines how UX principles and generative AI technologies can be harmoniously integrated to enhance user experiences, prioritizing human needs and values in the design process. The findings reveal significant insights into ethical considerations, user personalization, the importance of human-centric approaches, trust and perception challenges, and advances in human-AI interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlini, N., et al.: Extracting training data from large language models. In: Proceedings of the 30th USENIX Security Symposium (2021)

    Google Scholar 

  2. Antler: Antler Gen-AI Landscape (2023). https://airtable.com/shrBeWpMlxf3e14E8/tblS4TkbJbm0cqT0o. Accessed 21 Apr 2024

  3. Xu, W., Dainoff, M., Ge, L., Gao, Z.: Transitioning to human interaction with AI Systems: new challenges and opportunities for HCI professionals to enable human-centered AI. Int. J. Hum.-Comput. Interact. 39(3), 459–518 (2022)

    Google Scholar 

  4. Shneiderman, B.: Bridging the gap between ethics and practice: guidelines for reliable, safe, and trustworthy human-centered AI systems. ACM Trans. Interact. Intell. Syst. (TiiS) 10(4), 1–31 (2020). https://doi.org/10.1145/3427592

  5. Liu, F., Zhang, M.: AI as a UX Assistant (2023). https://www.nngroup.com/articles/ai-roles-ux/. Accessed 21 Feb 2024

  6. Moran, K.: The UX of AI: Lessons from Perplexity. NNGroup (2024). https://www.nngroup.com/articles/perplexity-henry-modisett/. Accessed 21 Feb 2024

  7. HAI Standord Univesity: Human-Centered Artificial Intelligence, Stanford University (2023). https://hai.stanford.edu/about. Accessed 11 Oct 2023

  8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436-444 (2015). https://doi.org/10.1038/nature14539

  9. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  10. Martineau, K.: What is generative AI? IBM (2023). https://research.ibm.com/blog/what-is-generative-AI. Accessed 09 Oct 2023

  11. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  12. Haslam, A., Worthy, P.: Where is the human in human-centered AI? Insights from developer priorities and user experiences. Comput. Hum. Behav. 141, 107617 (2023). https://doi.org/10.1016/j.chb.2022.107617

  13. Baabdullah, A., Alalwan, A., Algharabat, R., Metri, B., Rana, N.: Virtual agents and flow experience: an empirical examination of AI-powered chatbots. Technol. Forecasting Soc. Change 181, 121772 (2022). https://doi.org/10.1016/j.techfore.2022.121772

  14. Gill, S., et al.: Transformative effects of ChatGPT on modern education: emerging Era of AI Chatbots. Internet of Things Cyber-Phys. Syst. 4, 19–23 (2024)

    Article  MATH  Google Scholar 

  15. Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., Zhang, Y.: A survey on large language model (LLM) security and privacy: the good, the bad, and the ugly. arXiv preprint arXiv:2312.02003 (2023)

  16. Li, Y., et al.: Personal LLM agents: insights and survey about the capability, efficiency and security. arXiv preprint arXiv:2401.05459 (2024)

  17. J Wang, W.M., Sun, P., Zhang, M., Nie, J.Y.: Understanding user experience in large language model interactions. arXiv preprint arXiv:2401.08329 (2024)

  18. Gerhardsen, J.: Evaluating the user experience of a learning management system:-to improve usability (2023)

    Google Scholar 

  19. Corchado, J., López, S., Núñez, J., Garcia, R., Chamoso, P.: Generative artificial intelligence: fundamentals. ADCAIJ 12(1), e31704 (2023). https://doi.org/10.14201/adcaij.31704

  20. Touvron, H., et al.: Llama 2: open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)

  21. Cui, Y., Yang, Z., Yao, X.: Efficient and effective text encoding for Chinese llama and alpaca. arXiv preprint arXiv:2304.08177 (2023)

  22. Page, M.J., et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int. J. Surgery 88, 105906 (2021). https://doi.org/10.1016/j.ijsu.2021.105906

  23. Liu, Y., Siau, K.: Generative artificial intelligence and metaverse: future of work, future of society, and future of humanity. In: International Conference on AI-generated Content, Singapore (2023)

    Google Scholar 

  24. Hassan, A.: Factors affecting the use of ChatGPT in mass communication. In: Emerging Trends and Innovation in Business and Finance, pp. 671–685. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-99-6101-6_49

  25. Brandtzaeg, P., You, Y., Wang, X., Lao, Y.: “Good” and “Bad” machine agency in the context of Human-AI communication: the case of ChatGPT. In: International Conference on Human-Computer Interaction, Copenhagen, Denmark (2023)

    Google Scholar 

  26. Shin, D., Ahmad, N.: Algorithmic nudge: an approach to designing human-centered generative artificial intelligence. Computer 56(8), 95–99 (2023). https://doi.org/10.1109/MC.2023.3278156

  27. Sison, A.J.G., Daza, M.T., Gozalo-Brizuela, R., Garrido-Merchán, E.C.: ChatGPT: more than a “Weapon of Mass Deception” ethical challenges and responses from the human-centered artificial intelligence (HCAI) perspective. Int. J. Hum.-Comput. Interact. (2023)

    Google Scholar 

  28. Weisz, J.D., Muller, M., He, J., Houde, S.: Toward general design principles for generative AI applications (2023). https://arxiv.org/abs/2301.05578. Accessed 17 Feb 2024

  29. Shah, C.S., Mathur, S., Vishnoi, S.K.: Continuance intention of ChatGPT use by students. In International Working Conference on Transfer and Diffusion of IT, Nagpur, India (2023)

    Google Scholar 

  30. Tlili, A., et al.: What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learn. Environ. 10, 15 (2023)

    Article  MATH  Google Scholar 

  31. York, E.: Evaluating ChatGPT: generative AI in UX design and web development pedagogy. In: Proceedings of the 41st ACM International Conference on Design of Communication, Orlando, Florida. USA (2023)

    Google Scholar 

  32. Hernández-Leo, D.: ChatGPT and generative AI in higher education: user-centered perspectives and implications for learning analytics. LASI Spain, Madrid (2023)

    Google Scholar 

  33. Mørch, A.I., Andersen, R.: Human-Centred AI in education in the age of generative AI tools. In: Proceedings (2023). http://ceur-ws.org

  34. Banh, L., Strobel, G.: Generative artificial intelligence. Electron. Markets 33(1), 1–17 (2023). https://doi.org/10.5771/1619-2427-2023-17-1-1

  35. Peruchini, M., da Silva, G.M., Teixeira, J.M.: Between artificial intelligence and customer experience: a literature review on the intersection. Discover Artif. Intell. 4(1), 4 (2024)

    Article  MATH  Google Scholar 

  36. Wang, X., Attal, M.I., Rafiq, U., Hubner-Benz, S.: Turning large language models into AI assistants for startups using prompt patterns. In: International Conference on Agile Software Development, Copenhagen, Denmark (2022)

    Google Scholar 

  37. Choi, W., Zhang, Y., Stvilia, B.: Exploring applications and user experience with generative AI tools: a content analysis of reddit posts on ChatGPT. In: Proceedings of the Association for Information Science and Technology (2023)

    Google Scholar 

  38. Lo, L.: The art and science of prompt engineering: a new literacy in the information age. Internet Reference Serv. Q., 203–210 (2023)

    Google Scholar 

  39. Oniani, D., et al.: Adopting and expanding ethical principles for generative AI from military to healthcare. NPJ Digit. Med. 6(1), 225 (2023)

    Article  MATH  Google Scholar 

  40. Guo, M., Zhang, X., Zhuang, Y., Chen, J., Wang, P., Gao, Z.: Exploring the intersection of complex aesthetics and generative AI for promoting cultural creativity in rural china after the post-pandemic era. In: International Conference on AI-generated Content, pp. 313–331. Singapore, Springer (2023). https://doi.org/10.1007/978-981-99-7587-7_27

  41. Mao, Y., Rafner, J., Wang, Y., Sherson, J.: A hybrid intelligence approach to training generative design assistants: partnership between human experts and AI enhanced co-creative tools. In: HHAI 2023: Augmenting Human Intellect. IOS Press, pp. 108–123 (2023)

    Google Scholar 

  42. Fisher, J.: Centering the Human: digital humanism and the practice of using generative AI in the authoring of interactive digital narratives. In: International Conference on Interactive Digital Storytelling, Kobe, Japan (2023)

    Google Scholar 

  43. Qadri, R., Shelby, R., Bennett, C., Denton, E.: AI’s Regimes of Representation: a community-centered study of text-to-image models in South Asia. In: ACM Conference on Fairness, Accountability, and Transparency, Chicago, IL, USA (2023)

    Google Scholar 

  44. Sun, J., Houde, S., Talamadupula, K., Weisz, J.D.: Investigating explainability of generative AI for code through scenario-based design. In: 7th International Conference on Intelligent User Interfaces, Miami, FL. USA (2022)

    Google Scholar 

  45. Kim, P.W.: A framework to overcome the dark side of generative artificial intelligence (GAI) like ChatGPT in social media and education. IEEE Trans. Comput. Soc. Syst. (2023)

    Google Scholar 

  46. Huang, Y.: The Future of Generative AI: how GenAI would change human-computer co-creation in the next 10 to 15 years. In: Proceedings of the Annual Symposium on Computer-Human Interaction in Play, Stratford, Canada (2023)

    Google Scholar 

  47. Asadi, A.R.: LLMs in design thinking: autoethnographic insights and design implications. In: Proceedings of the 2023 5th World Symposium on Software Engineering, Tokyo, Japan (2023)

    Google Scholar 

  48. Yoon, H., Jun, S.: Ethical awareness of UXers in the loop: ethical issues in the Uxer-AI collaboration process from a UX perspective. In: Proceedings of the 25th International Conference on Mobile HCI, Athens, Greece (2023)

    Google Scholar 

  49. Zhihan, L.: Generative artificial intelligence in the metaverse era. Cognitive Robot. 3, 208–217 (2023). https://doi.org/10.1016/j.cogr.2023.06.001

  50. Baek, T.H., Kim, M.: Is ChatGPT scary good? How user motivations affect creepiness and trust in generative artificial intelligence. Telematics Inform. 83, 102030 (2023). https://doi.org/10.1016/j.tele.2023.102030

  51. Sarraf, S., Kar, A., Janssen, M.: How do system and user characteristics, along with anthropomorphism, impact cognitive absorption of chatbots-Introducing SUCCAST through a mixed methods study. Decis. Support Syst., 178 (2024)

    Google Scholar 

  52. Li, J., Cao, H., Lin, L., Hou, Y., Zhu, R., Ali, A.E.: User Experience Design Professionals’ Perceptions of Generative Artificial Intelligence. arXiv preprint arXiv:2309.15237 (2023)

  53. Nguyen, T.T., Wilson, C., Dalins, J.: Fine-tuning llama 2 large language models for detecting online sexual predatory chats and abusive texts. arXiv preprint arXiv:2308.14683 (2023)

Download references

Acknowledgements

This research is part of the International Chair Project on Reliable Artificial Intelligence and Demographic Challenge within the National Strategy for Artificial Intelligence (ENIA), in the framework of the European Recovery, Transformation and Resilience Plan. Referencia: TSI-100933-2023-0001. This project is funded by the Secretary of State for Digitalization and Artificial Intelligence and by the European Union(Next Generation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Núñez V .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peláez, C.A. et al. (2025). Designing User Experience in the Context of Human-Centered AI and Generative Artificial Intelligence: A Systematic Review. In: Chinthaginjala, R., Sitek, P., Min-Allah, N., Matsui, K., Ossowski, S., Rodríguez, S. (eds) Distributed Computing and Artificial Intelligence, 21st International Conference. DCAI 2024. Lecture Notes in Networks and Systems, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-031-82073-1_20

Download citation

Publish with us

Policies and ethics