Skip to main content

An Analysis of Different Text Representation Schemes for an Immune Clustering Algorithm

  • Conference paper
  • First Online:
Distributed Computing and Artificial Intelligence, 21st International Conference (DCAI 2024)

Abstract

This research investigates the challenges and effectiveness of various text representation methods (standard vector, grammar-based, and distributed), when applied to clustering short texts. The study explores Bag-of-Words for standard vector, Linguistic Inquiry and Word Count (LIWC), Part-of-Speech Tagging (POS-Tagging), and the Medical Research Council Psycholinguistic Database (MRC) for grammar-based, and Word2Vec, fastText, Doc2Vec, and SentenceBERT for distributed representations. Utilizing the aiNet bio-inspired clustering algorithm, the results reveal surprising findings, with grammar-based representations demonstrating competitive performance despite their simplicity, while standard vectors exhibit known challenges like high dimensionality. The study contributes insights into the properties of different text representations, providing a foundation for optimizing their application in clustering tasks with short and informal texts.

Supported by CNPq for the research grant PQ 303356/2022-7; CAPES for the projects STIC-AmSud (CAMA) No. 88881.694458/2022-01; Mackenzie-PrInt No. 88887.310281/2018-00; and FAPESP for grant 2021/11905-0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Google Scholar 

  2. Cahyani, D.E., Patasik, I.: Performance comparison of TF-IDF and word2vec models for emotion text classification. Bull. Electr. Eng. Inform. 10(5), 2780–2788 (2021)

    Article  MATH  Google Scholar 

  3. Dasgupta, D., Yu, S., Nino, F.: Recent advances in artificial immune systems: models and applications. Appl. Soft Comput. 11(2), 1574–1587 (2011)

    Article  MATH  Google Scholar 

  4. de Castro, L.N., Timmis, J.: Artificial immune systems: a new computational intelligence approach. Springer Science & Business Media (2002)

    Google Scholar 

  5. de Castro, L.N., Von Zuben, F.J.: aiNet: an artificial immune network for data analysis. In: Data Mining: a Heuristic Approach, pp. 231–260. IGI Global (2002)

    Google Scholar 

  6. Hang, S.: Clustering short texts: categorizing initial utterances from customer service dialogue agents (2021)

    Google Scholar 

  7. Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol. 125C(1–2), 373–389 (1974)

    MATH  Google Scholar 

  8. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196. PMLR (2014)

    Google Scholar 

  9. Naseem, U., Razzak, I., Khan, S.K., Prasad, M.: A comprehensive survey on word representation models: from classical to state-of-the-art word representation language models. Trans. Asian Low-Resource Lang. Inf. Process. 20(5), 1–35 (2021)

    Article  MATH  Google Scholar 

  10. Pibiri, G.E., Venturini, R.: Handling massive n-gram datasets efficiently. ACM Trans. Inf. Syst. (TOIS) 37(2), 1–41 (2019)

    Article  MATH  Google Scholar 

  11. Puigcerver, J., Toselli, A.H., Vidal, E.: Querying out-of-vocabulary words in lexicon-based keyword spotting. Neural Comput. Appl. 28, 2373–2382 (2017)

    Article  Google Scholar 

  12. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

  13. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, pp. 252–259 (2003)

    Google Scholar 

  14. Wang, P., Xu, B., Xu, J., Tian, G., Liu, C.L., Hao, H.: Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification. Neurocomputing 174, 806–814 (2016)

    Article  MATH  Google Scholar 

  15. Wilson, M.: MRC psycholinguistic database: machine-usable dictionary, version 2.00. Behavior Res. Methods Instrum. Comput. 20(1), 6–10 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus A. Ferraria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferraria, M.A., Balbi, P.P., de Castro, L.N. (2025). An Analysis of Different Text Representation Schemes for an Immune Clustering Algorithm. In: Chinthaginjala, R., Sitek, P., Min-Allah, N., Matsui, K., Ossowski, S., Rodríguez, S. (eds) Distributed Computing and Artificial Intelligence, 21st International Conference. DCAI 2024. Lecture Notes in Networks and Systems, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-031-82073-1_25

Download citation

Publish with us

Policies and ethics