Skip to main content

A Parameter-Free Normal Estimator on Digital Surfaces

  • Conference paper
  • First Online:
Intelligent Systems and Pattern Recognition (ISPR 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2303))

  • 148 Accesses

Abstract

The processing of 3D digital objects often requires the computation and analysis of their geometrical features. The normal vectors of the object’s surface in particular provide important information used in image processing applications. We present in this paper a new method for the estimation of normal vectors on the surface of a 3D digital object. It is both local and parameter-free. The proposed method involves the study of neighborhoods around points using planar sectors. Experimental evaluations using multigrid approaches show that it is both faster and more robust than state-of-the-art methods in the field, while being of comparable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See https://www.dgtal.org/doc/stable/modulePlaneRecognition.html#modulePlaneRecognition_sec5 for more details.

References

  1. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graph. Models Image Process. 59(5), 302–309 (1997)

    Article  MATH  Google Scholar 

  2. Charrier, E., Buzer, L.: An efficient and quasi linear worst-case time algorithm for digital plane recognition. In: Discrete Geometry for Computer Imagery, 14th IAPR International Conference, DGCI, vol. 4992, pp. 346–357 (2008)

    Google Scholar 

  3. Charrier, E., Lachaud, J.O.: Maximal planes and multiscale tangential cover of 3D digital objects. In: Combinatorial Image Analysis - 14th International Workshop (IWCIA), vol. 6636, pp. 132–143 (2011)

    Google Scholar 

  4. Coeurjolly, D., Flin, F., Teytaud, O., Tougne, L.: Multigrid convergence and surface area estimation. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 101–119. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36586-9_7

    Chapter  MATH  Google Scholar 

  5. Coeurjolly, D., Lachaud, J.O., Levallois, J.: Integral based curvature estimators in digital geometry. In: Discrete Geometry for Computer Imagery - 17th IAPR International Conference, DGCI, vol. 7749, pp. 215–227 (2013)

    Google Scholar 

  6. DGtal: digital geometry tools and algorithms library. http://dgtal.org

  7. Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. Discret. Appl. Math. 151(1–3), 169–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  9. Lachaud, J.O., Provençal, X., Roussillon, T.: An output-sensitive algorithm to compute the normal vector of a digital plane. Theoret. Comput. Sci. 624, 73–88 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Roşca, D.: New uniform grids on the sphere. Astron. Astrophys. 520, A63 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aude Marêché .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marêché, A., Debled-Rennesson, I., Feschet, F., Ngo, P. (2025). A Parameter-Free Normal Estimator on Digital Surfaces. In: Bennour, A., Bouridane, A., Almaadeed, S., Bouaziz, B., Edirisinghe, E. (eds) Intelligent Systems and Pattern Recognition. ISPR 2024. Communications in Computer and Information Science, vol 2303. Springer, Cham. https://doi.org/10.1007/978-3-031-82150-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82150-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82149-3

  • Online ISBN: 978-3-031-82150-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics