Abstract
In this paper, we study the compartment-based and hierarchical delegation of signing power of the verifiable accountable subgroup multi-signature (vASM). ASM is a multi-signature in which the participants are accountable for the resulting signature, and the number of participants is not fixed. After Micali et al.’s and Boneh et al.’s ASM schemes, the verifiable-ASM (vASM) scheme with a verifiable group setup and more efficient verification phase was proposed recently. The verifiable group setup in vASM verifies the participants at the group setup phase. In this work, we show that the vASM scheme can also be considered as a proxy signature in which an authorized user (original signer, designator) delegates her signing rights to a single (or a group of) unauthorized user(s) (proxy signer). Namely, we propose four new constructions with the properties and functionalities of an ideal proxy signature and a compartment-based/hierarchical structure. In the first construction, we apply the vASM scheme recursively; in the second one, we use Shamir’s secret sharing (SSS) scheme; in the third construction, we use SSS again but in a nested fashion. In the last one, we use the hierarchical threshold secret sharing (HTSS) scheme for delegation. Then, we show the affiliation of our constructions to proxy signatures and compare our constructions with each other in terms of efficiency and security. Finally we compare the vASM scheme with the existing pairing-based proxy signature schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alomair, B., Sampigethaya, K., Poovendran, R.: Efficient generic forward-secure signatures and proxy signatures. In: Public Key Infrastructure: 5th European PKI Workshop: Theory and Practice, EuroPKI 2008 Trondheim, Norway, 16–17 June 2008 Proceedings 5, pp. 166–181. Springer (2008)
Ağırtaş, A.R., Yayla, O.: Pairing-based accountable subgroup multi-signatures with verifiable group setup. Cryptology ePrint Archive, Report 2022/018 (2022). https://ia.cr/2022/018
Ağırtaş, A.R., Yayla, O.: A lattice-based accountable subgroup multi-signature scheme with verifiable group setup. Cryptology ePrint Archive, Paper 2024/014 (2024). https://eprint.iacr.org/2024/014. https://eprint.iacr.org/2024/014
Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3
Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for delegation of signing rights. J. Cryptol. 25, 57–115 (2012)
Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_15
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryptol. 17(4), 297–319 (2004)
Cao, F., Cao, Z.: A secure identity-based multi-proxy signature scheme. Comput. Electr. Eng. 35(1), 86–95 (2009)
Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) Advances in Cryptology - CRYPTO’89 Proceedings, pp. 307–315. Springer, New York (1990)
Du, H., Wen, Q.: Certificateless proxy multi-signature. Inf. Sci. 276, 21–30 (2014)
Eslami, Z., Pakniat, N., Nojoumian, M.: Ideal social secret sharing using birkhoff interpolation method. Secur. Commun. Netw. 9 (2016)
Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pp. 427–438 (1987)
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures. In: Maurer, U. (ed.) Advances in Cryptology – EUROCRYPT 1996, pp. 354–371. Springer, Heidelberg (1996)
Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital multisignature. IEE Proc. Comput. Digit. Tech. 141, 307–313 (1994)
Herranz, J., Sáez, G.: Revisiting fully distributed proxy signature schemes. In: Canteaut, A., Viswanathan, K. (eds.) Progress in Cryptology - INDOCRYPT 2004, pp. 356–370. Springer, Heidelberg (2005)
Käsper, E., Nikov, V., Nikova, S.: Strongly multiplicative hierarchical threshold secret sharing. In: Desmedt, Y. (ed.) Information Theoretic Security, pp. 148–168. Springer, Heidelberg (2009)
Kim, S., Park, S., Won, D.: Proxy signatures, revisited. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 223–232. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0028478
Lee, B., Kim, H., Kim, K.: Strong proxy signature and its applications. In: Proceedings of SCIS, pp. 474–486 (2001)
Lee, B., Kim, H., Kim, K.: Secure mobile agent using strong non-designated proxy signature. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 474–486. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47719-5_37
Lee, J.S., Chang, J.H., Lee, D.H.: Forgery attacks on Kang et al.’s identity-based strong designated verifier signature scheme and its improvement with security proof. Comput. Electr. Eng. 36(5), 948-954 (2010)
Li, J., Yuen, T.H., Chen, X., Wang, Y.: Proxy ring signature: Formal definitions, efficient construction and new variant. In: 2006 International Conference on Computational Intelligence and Security, vol. 2, pp. 1259–1264 (2006)
Li, X., Chen, K.: ID-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature schemes from bilinear pairings. Appl. Math. Comput. 169(1), 437-450 (2005)
Lin, W., Jan, J.K.: Security personal learning tools using a proxy blind signature scheme. In: Proceedings of Journal of Chinese Language and Computing, pp. 273–277 (2000)
Liu, Z., Hu, Y., Zhang, X., Ma, H.: Provably secure multi-proxy signature scheme with revocation in the standard model. Comput. Commun. 34(3), 494–501 (2011)
Malkin, T., Obana, S., Yung, M.: The hierarchy of key evolving signatures and a characterization of proxy signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 306–322. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_19
Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, CCS 1996, pp. 48–57. Association for Computing Machinery, New York (1996)
Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: Proceedings of the 8th ACM Conference on Computer and Communications Security, CCS 2001, pp. 245–254. Association for Computing Machinery, New York (2001)
Okamoto, T., Tada, M., Okamoto, E.: Extended proxy signatures for smart cards. In: ISW 1999. LNCS, vol. 1729, pp. 247–258. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-47790-X_21
Sahu, R.A., Padhye, S.: Identity-based multi-proxy multi-signature scheme provably secure in random oracle model. Trans. Emerg. Telecommun. Technol. 26(4), 547–558 (2015)
Seo, S., Choi, K., Hwang, J., Kim, S.: Efficient certificateless proxy signature scheme with provable security. Inf. Sci. 188, 322–337 (2012)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Shim, K.A.: Short designated verifier proxy signatures. Comput. Electr. Eng. 37(2), 180–186 (2011). https://doi.org/10.1016/j.compeleceng.2011.02.004
Shin-Jia, H., Chiu-Chin, C.: New multi-proxy multi-signature schemes. Appl. Math. Comput. 147(1), 57–67 (2004). https://www.sciencedirect.com/science/article/pii/S0096300302006501
Hwang, S.J., Shi, C.: A simple multi-proxy signature scheme for electronic commerce. In: Proceedings of the 10th National Conference on Information Security, Hualien Taiwan, ROC, pp. 134–138 (2000)
Sun, H.M.: Design of time-stamped proxy signatures with traceable receivers. IEE Proc.-Comput. Digit. Tech. 147(6), 462–466 (2000)
Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_26
Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. J. Cryptol. 22(2), 227–258 (2009)
Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptol. 1(3), 133–138 (1989)
Verma, G.K., Singh, B.B.: Short certificate-based proxy signature scheme from pairings. Trans. Emerg. Telecommun. Technol. 28(12), e3214 (2017)
Wu, C.K., Varadharajan, V.: Modified Chinese remainder theorem and its application to proxy signatures. In: Proceedings of the 1999 ICPP Workshops on Collaboration and Mobile Computing (CMC 1999). Group Communications (IWGC). Internet ’99 (IWI’99). Industrial Applications on Network Computing (INDAP). Multime, pp. 146–151 (1999)
Yi, L., Bai, G., Xiao, G.: Proxy multi-signature scheme: a new type of proxy signature scheme. Electron. Lett. 36, 527 – 528 (2000)
Zhang, F., Safavi-Naini, R., Lin, C.Y.: New proxy signature, proxy blind signature and proxy ring signature schemes from bilinear pairing. Cryptology ePrint Archive, Report 2003/104 (2003). https://ia.cr/2003/104
Zhang, K.: Threshold proxy signature schemes. In: Okamoto, E., Davida, G., Mambo, M. (eds.) ISW 1997. LNCS, vol. 1396, pp. 282–290. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0030429
Zhang, L., Zhang, F., Wu, Q.: Delegation of signing rights using certificateless proxy signatures. Inf. Sci. 184(1), 298–309 (2012)
Acknowledgments
The authors express their gratitude to the anonymous reviewers for their detailed comments, which have significantly improved the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ağırtaş, A.R., Yayla, O. (2025). Compartment-Based and Hierarchical Threshold Delegated Verifiable Accountable Subgroup Multi-signatures. In: Dąbrowski, A., Pieprzyk, J., Pomykała, J. (eds) Number-Theoretic Methods in Cryptology. NuTMiC 2024. Lecture Notes in Computer Science, vol 14966. Springer, Cham. https://doi.org/10.1007/978-3-031-82380-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-82380-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82379-4
Online ISBN: 978-3-031-82380-0
eBook Packages: Computer ScienceComputer Science (R0)