Skip to main content

Compartment-Based and Hierarchical Threshold Delegated Verifiable Accountable Subgroup Multi-signatures

  • Conference paper
  • First Online:
Number-Theoretic Methods in Cryptology (NuTMiC 2024)

Abstract

In this paper, we study the compartment-based and hierarchical delegation of signing power of the verifiable accountable subgroup multi-signature (vASM). ASM is a multi-signature in which the participants are accountable for the resulting signature, and the number of participants is not fixed. After Micali et al.’s and Boneh et al.’s ASM schemes, the verifiable-ASM (vASM) scheme with a verifiable group setup and more efficient verification phase was proposed recently. The verifiable group setup in vASM verifies the participants at the group setup phase. In this work, we show that the vASM scheme can also be considered as a proxy signature in which an authorized user (original signer, designator) delegates her signing rights to a single (or a group of) unauthorized user(s) (proxy signer). Namely, we propose four new constructions with the properties and functionalities of an ideal proxy signature and a compartment-based/hierarchical structure. In the first construction, we apply the vASM scheme recursively; in the second one, we use Shamir’s secret sharing (SSS) scheme; in the third construction, we use SSS again but in a nested fashion. In the last one, we use the hierarchical threshold secret sharing (HTSS) scheme for delegation. Then, we show the affiliation of our constructions to proxy signatures and compare our constructions with each other in terms of efficiency and security. Finally we compare the vASM scheme with the existing pairing-based proxy signature schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alomair, B., Sampigethaya, K., Poovendran, R.: Efficient generic forward-secure signatures and proxy signatures. In: Public Key Infrastructure: 5th European PKI Workshop: Theory and Practice, EuroPKI 2008 Trondheim, Norway, 16–17 June 2008 Proceedings 5, pp. 166–181. Springer (2008)

    Google Scholar 

  2. Ağırtaş, A.R., Yayla, O.: Pairing-based accountable subgroup multi-signatures with verifiable group setup. Cryptology ePrint Archive, Report 2022/018 (2022). https://ia.cr/2022/018

  3. Ağırtaş, A.R., Yayla, O.: A lattice-based accountable subgroup multi-signature scheme with verifiable group setup. Cryptology ePrint Archive, Paper 2024/014 (2024). https://eprint.iacr.org/2024/014. https://eprint.iacr.org/2024/014

  4. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

    Chapter  MATH  Google Scholar 

  5. Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for delegation of signing rights. J. Cryptol. 25, 57–115 (2012)

    Google Scholar 

  6. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_15

    Chapter  MATH  Google Scholar 

  7. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26

    Chapter  MATH  Google Scholar 

  8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryptol. 17(4), 297–319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, F., Cao, Z.: A secure identity-based multi-proxy signature scheme. Comput. Electr. Eng. 35(1), 86–95 (2009)

    Article  MATH  Google Scholar 

  10. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) Advances in Cryptology - CRYPTO’89 Proceedings, pp. 307–315. Springer, New York (1990)

    Chapter  MATH  Google Scholar 

  11. Du, H., Wen, Q.: Certificateless proxy multi-signature. Inf. Sci. 276, 21–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eslami, Z., Pakniat, N., Nojoumian, M.: Ideal social secret sharing using birkhoff interpolation method. Secur. Commun. Netw. 9 (2016)

    Google Scholar 

  13. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pp. 427–438 (1987)

    Google Scholar 

  14. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures. In: Maurer, U. (ed.) Advances in Cryptology – EUROCRYPT 1996, pp. 354–371. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  15. Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital multisignature. IEE Proc. Comput. Digit. Tech. 141, 307–313 (1994)

    Google Scholar 

  16. Herranz, J., Sáez, G.: Revisiting fully distributed proxy signature schemes. In: Canteaut, A., Viswanathan, K. (eds.) Progress in Cryptology - INDOCRYPT 2004, pp. 356–370. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  17. Käsper, E., Nikov, V., Nikova, S.: Strongly multiplicative hierarchical threshold secret sharing. In: Desmedt, Y. (ed.) Information Theoretic Security, pp. 148–168. Springer, Heidelberg (2009)

    Chapter  MATH  Google Scholar 

  18. Kim, S., Park, S., Won, D.: Proxy signatures, revisited. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 223–232. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0028478

    Chapter  MATH  Google Scholar 

  19. Lee, B., Kim, H., Kim, K.: Strong proxy signature and its applications. In: Proceedings of SCIS, pp. 474–486 (2001)

    Google Scholar 

  20. Lee, B., Kim, H., Kim, K.: Secure mobile agent using strong non-designated proxy signature. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 474–486. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47719-5_37

    Chapter  MATH  Google Scholar 

  21. Lee, J.S., Chang, J.H., Lee, D.H.: Forgery attacks on Kang et al.’s identity-based strong designated verifier signature scheme and its improvement with security proof. Comput. Electr. Eng. 36(5), 948-954 (2010)

    Google Scholar 

  22. Li, J., Yuen, T.H., Chen, X., Wang, Y.: Proxy ring signature: Formal definitions, efficient construction and new variant. In: 2006 International Conference on Computational Intelligence and Security, vol. 2, pp. 1259–1264 (2006)

    Google Scholar 

  23. Li, X., Chen, K.: ID-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature schemes from bilinear pairings. Appl. Math. Comput. 169(1), 437-450 (2005)

    Google Scholar 

  24. Lin, W., Jan, J.K.: Security personal learning tools using a proxy blind signature scheme. In: Proceedings of Journal of Chinese Language and Computing, pp. 273–277 (2000)

    Google Scholar 

  25. Liu, Z., Hu, Y., Zhang, X., Ma, H.: Provably secure multi-proxy signature scheme with revocation in the standard model. Comput. Commun. 34(3), 494–501 (2011)

    Article  MATH  Google Scholar 

  26. Malkin, T., Obana, S., Yung, M.: The hierarchy of key evolving signatures and a characterization of proxy signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 306–322. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_19

    Chapter  MATH  Google Scholar 

  27. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, CCS 1996, pp. 48–57. Association for Computing Machinery, New York (1996)

    Google Scholar 

  28. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: Proceedings of the 8th ACM Conference on Computer and Communications Security, CCS 2001, pp. 245–254. Association for Computing Machinery, New York (2001)

    Google Scholar 

  29. Okamoto, T., Tada, M., Okamoto, E.: Extended proxy signatures for smart cards. In: ISW 1999. LNCS, vol. 1729, pp. 247–258. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-47790-X_21

    Chapter  MATH  Google Scholar 

  30. Sahu, R.A., Padhye, S.: Identity-based multi-proxy multi-signature scheme provably secure in random oracle model. Trans. Emerg. Telecommun. Technol. 26(4), 547–558 (2015)

    Article  MATH  Google Scholar 

  31. Seo, S., Choi, K., Hwang, J., Kim, S.: Efficient certificateless proxy signature scheme with provable security. Inf. Sci. 188, 322–337 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shim, K.A.: Short designated verifier proxy signatures. Comput. Electr. Eng. 37(2), 180–186 (2011). https://doi.org/10.1016/j.compeleceng.2011.02.004

    Article  MATH  Google Scholar 

  34. Shin-Jia, H., Chiu-Chin, C.: New multi-proxy multi-signature schemes. Appl. Math. Comput. 147(1), 57–67 (2004). https://www.sciencedirect.com/science/article/pii/S0096300302006501

  35. Hwang, S.J., Shi, C.: A simple multi-proxy signature scheme for electronic commerce. In: Proceedings of the 10th National Conference on Information Security, Hualien Taiwan, ROC, pp. 134–138 (2000)

    Google Scholar 

  36. Sun, H.M.: Design of time-stamped proxy signatures with traceable receivers. IEE Proc.-Comput. Digit. Tech. 147(6), 462–466 (2000)

    Article  MATH  Google Scholar 

  37. Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_26

    Chapter  MATH  Google Scholar 

  38. Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. J. Cryptol. 22(2), 227–258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptol. 1(3), 133–138 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Verma, G.K., Singh, B.B.: Short certificate-based proxy signature scheme from pairings. Trans. Emerg. Telecommun. Technol. 28(12), e3214 (2017)

    Google Scholar 

  41. Wu, C.K., Varadharajan, V.: Modified Chinese remainder theorem and its application to proxy signatures. In: Proceedings of the 1999 ICPP Workshops on Collaboration and Mobile Computing (CMC 1999). Group Communications (IWGC). Internet ’99 (IWI’99). Industrial Applications on Network Computing (INDAP). Multime, pp. 146–151 (1999)

    Google Scholar 

  42. Yi, L., Bai, G., Xiao, G.: Proxy multi-signature scheme: a new type of proxy signature scheme. Electron. Lett. 36, 527 – 528 (2000)

    Google Scholar 

  43. Zhang, F., Safavi-Naini, R., Lin, C.Y.: New proxy signature, proxy blind signature and proxy ring signature schemes from bilinear pairing. Cryptology ePrint Archive, Report 2003/104 (2003). https://ia.cr/2003/104

  44. Zhang, K.: Threshold proxy signature schemes. In: Okamoto, E., Davida, G., Mambo, M. (eds.) ISW 1997. LNCS, vol. 1396, pp. 282–290. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0030429

    Chapter  MATH  Google Scholar 

  45. Zhang, L., Zhang, F., Wu, Q.: Delegation of signing rights using certificateless proxy signatures. Inf. Sci. 184(1), 298–309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the anonymous reviewers for their detailed comments, which have significantly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Ramazan Ağırtaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ağırtaş, A.R., Yayla, O. (2025). Compartment-Based and Hierarchical Threshold Delegated Verifiable Accountable Subgroup Multi-signatures. In: Dąbrowski, A., Pieprzyk, J., Pomykała, J. (eds) Number-Theoretic Methods in Cryptology. NuTMiC 2024. Lecture Notes in Computer Science, vol 14966. Springer, Cham. https://doi.org/10.1007/978-3-031-82380-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82380-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82379-4

  • Online ISBN: 978-3-031-82380-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics