Skip to main content

Towards Message Recovery in NTRU Encryption with Auxiliary Data

  • Conference paper
  • First Online:
Number-Theoretic Methods in Cryptology (NuTMiC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14966))

Included in the following conference series:

  • 84 Accesses

Abstract

In the present paper, we implement a message recovery attack on the NTRU-HPS cryptosystem using its state-of-the-art parameters. We assume the knowledge of at most 2 bits of each coefficient of an unknown polynomial u(x). Then, using Babai’s nearest plane algorithm, we successfully recover the message. Additionally, we discuss the possibility of a side-channel attack method designed to extract the necessary bit information from the cryptographic operations.

The second author was co-funded by SECUR-EU. The SECUR-EU project funded under Grant Agreement 101128029 is supported by the European Cybersecurity Competence Centre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For instance if \(m(x)=m_{N-1}x^{N-1}+m_{N-2}x^{N-2}+\cdots +m_1x+m_0\) then \(\textbf{m}=(m_0,m_1,...,m_{N-2},m_{N-1}).\) In this case \(m_i\in \{-1,0,1\}\) and \(m_{N-1}=0\) since \({\mathcal {M}}_m= {\mathcal {T}}_{N-2}(\frac{q}{16}-1,\frac{q}{16}-1).\)

References

  1. Adamoudis, M., Draziotis, K.A., Poulakis, D.: Enhancing a DSA attack. In: CAI 2019, pp. 13–25. LNCS, vol. 11545. Springer (2019)

    Google Scholar 

  2. Abdel, K., Amr, Y.: A scan-based side channel attack on the NTRUEncrypt cryptosystem. In: 7th International Conference on Availability, Reliability and Security (2012)

    Google Scholar 

  3. Adamoudis, M., Draziotis, K.A.: Message recovery attack on NTRU using a lattice independent from the public key (2023, to appear in Advances in Mathematics of Communications (Amer. Inst. of Math. Sciences)). https://doi.org/10.3934/amc.2023040

  4. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_6

  5. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgeois, G., Faugère, J.C.: Algebraic attack on NTRU using Witt vectors and Gröbner bases. J. Math. Cryptol. 3(3), 205–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Proceedings of the Eurocrypt. LNCS, vol. 1223. Springer (1997)

    Google Scholar 

  8. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis of the GGH multilinear map without an encoding of zero. Cryptology ePrint Archive, Report 2016/139 (2016)

    Google Scholar 

  9. Galbraith, S.: Mathematics of Public key Cryptography, Cambridge University Press (2012)

    Google Scholar 

  10. Gama, N., Nguyen, P.Q.: New chosen-ciphertext attacks on NTRU. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 89–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_7

  11. Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_12

  12. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J. (eds.) Proceedings of ANTS 1998. LNCS, vol. 1423, pp. 267–288 (1998)

    Google Scholar 

  13. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_9

  14. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes. Des. Codes Cryptogr. 23, 283–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kirchner, P., Fouque, P.A.: Revisiting lattice attacks on overstretched NTRU parameters. In: Eurocrypt 2017. LNCS, vol. 10210. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_12

  16. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Meet-in-the-middle Attack on an NTRU private key, Technical report, NTRU Cryptosystems, July 2006. Report 04. http://www.ntru.com

  17. Kirshanova, E., May, A., Nowakowsk, J.: New NTRU Records with. Improved Lattice Bases. eprint: 2023/582

    Google Scholar 

  18. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Advances in Cryptology — CRYPTO 1996. Springer, Heidelberg (2001)

    Google Scholar 

  19. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptology — CRYPTO 1999. Lecture Notes in Computer Science, vol. 1666. Springer, Heidelberg (1999)

    Google Scholar 

  20. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks, Springer New York (2007). https://link.springer.com/book/10.1007/978-0-387-38162-6

  21. May, A.: Cryptanalysis of NTRU (preprint) (1999). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.3484

  22. May, A., Nowakowski, J.: Too Many Hints – When LLL Breaks LWE (2024). https://eprint.iacr.org/2023/777.pdf

  23. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations. In: Proceedings of STOC, pp. 351–358. ACM (2010)

    Google Scholar 

  24. Mol, P., Yung, M.: Recovering NTRU secret key from inversion oracles. In: PKC 2008 (2008). https://iacr.org/archive/pkc2008/49390018/49390018.pdf

  25. NIST, 3rd round candidate announcement. https://csrc.nist.gov/news/2020/pqc-third-round-candidate-announcement. Accessed 1 Jan 2022

  26. Nguyen, P.Q.: Boosting the hybrid attack on NTRU: torus LSH, permuted HNF and boxed sphere. In: Third PQC Standardization Conference (2021)

    Google Scholar 

  27. Paterson, K.G., Villanueva-Polanco, R.: Cold boot attacks on NTRU. In: Patra, A., Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 107–125. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71667-1_6

  28. Poimenidou, E., Adamoudis, M., Draziotis, K.A., Tsichlas, K.: Message Recovery Attack in NTRU through VFK Lattices. Preprint. https://doi.org/10.48550/arXiv.2311.17022

  29. Sage Mathematics Software, The Sage Development Team. http://www.sagemath.org

  30. Scott Edwards, GoldBug Crypto Messenger (2018). https://compendio.github.io/goldbug-manual/

  31. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society (1994)

    Google Scholar 

  32. Silverman, J.H.: Dimension-reduced lattices, zero-forced lattices, and the NTRU public key cryptosystem. Technical report 13, Version 1, NTRU Cryptosystems (1999)

    Google Scholar 

  33. Silverman, H., Smart, N.P., Vercauteren, F.: An algebraic approach to NTRU (\(q = 2n\)) via Witt vectors and overdetermined systems of non linear equations. In: Security in Communication Networks – SCN 2004. LNCS, vol. 3352, pp. 278–298. Springer (2005)

    Google Scholar 

  34. https://www.openssh.com/txt/release-9.0

  35. https://www.wolfssl.com/products/wolfssl/

Download references

Acknowledgement

The authors sincerely thank the referees for their valuable suggestions to the initial draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eirini Poimenidou .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Proposition 2

Let kN and q be positive integers with \(q \ge (k+1)\sqrt{k^2+1}.\) We set

$$ M_k= \left[ \begin{array}{c|c} I_N & -kI_N \\ \hline {{\textbf {0}}}_N & qI_N \\ \end{array}\right] . $$

Let \({\mathcal {L}}_{k}\) be the lattice generated by the rows of \(M_k.\) Then, \(\lambda _1(\mathcal {L}_k) = \sqrt{k^2+1}.\)

Proof

It is enough to prove that for all non-zero \(\textbf{v}\in {\mathcal {L}}_{k}\) we have \(\Vert \textbf{v}\Vert \ge \sqrt{k^2+1}.\) Since the first row of \(M_k\) has length \(\sqrt{k^2+1}\) we are done.

Suppose that there is a vector \(\textbf{v}\in {\mathcal {L}}_{k}\setminus \{\textbf{0}\}\) such that

$$\begin{aligned} \Vert \textbf{v}\Vert < \sqrt{k^2+1}. \end{aligned}$$
(8)

Let \(\textbf{b}_1,\dots ,\textbf{b}_{2N}\) be the rows of the matrix \(M_k.\) Since \(\textbf{v}\in {\mathcal {L}}_{k},\) there are integers \(l_1,\ldots ,l_{2N}\) such that,

$$ \textbf{v}=l_1\textbf{b}_1+\cdots +l_{2N} \textbf{b}_{2N} = $$
$$ (l_1,\ldots ,l_N,-l_1k+ql_{N+1},\ldots ,-l_Nk+ql_{2N}) $$

From the inequality (8) we get

$$\begin{aligned} {\left\{ \begin{array}{ll} |l_1|,|l_2|,\dots ,|l_N| < \sqrt{k^2+1}\\ |-l_1k+ql_{N+1}| < \sqrt{k^2+1}\\ \dots \\ |-l_Nk+ql_{2N}| < \sqrt{k^2+1} \end{array}\right. } \end{aligned}$$
(9)

So we can easily see that for \(i=1,\dots ,N\) we get

$$\begin{aligned} |l_ik| < \sqrt{k^2+1}k. \end{aligned}$$
(10)

Case 1: not all the integers \(l_{N+1},l_{N+2},\dots ,l_{2N}\) are zero.

Without loss of generality, say \(l_{N+j}\) is not zero for some \(j\in \{1,\dots ,N\}. \) Then from (10) and (9), we get

$$ \Vert \textbf{v}\Vert \ge |-l_jk+ql_{N+j}| \ge |l_{N+j}|q-|l_jk| > q -\sqrt{k^2+1}k \ge \sqrt{k^2+1}, $$

which contradicts to inequality (8).

Case 2: Let \(l_{N+1}=l_{N+2}=\dots =l_{2N}=0.\)

In this case

$$ \textbf{v} = (l_1,\ldots ,l_N,-l_1k,\ldots ,-l_Nk). $$

Then,

$$ \Vert \textbf{v}\Vert =\sqrt{l_1^2(1+k^2)+l_2^2(1+k^2)+\cdots +l_N^2(1+k^2)}>\sqrt{k^2+1}, $$

which contradicts our hypothesis (8). The Proposition follows.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adamoudis, M., Draziotis, K.A., Poimenidou, E. (2025). Towards Message Recovery in NTRU Encryption with Auxiliary Data. In: Dąbrowski, A., Pieprzyk, J., Pomykała, J. (eds) Number-Theoretic Methods in Cryptology. NuTMiC 2024. Lecture Notes in Computer Science, vol 14966. Springer, Cham. https://doi.org/10.1007/978-3-031-82380-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82380-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82379-4

  • Online ISBN: 978-3-031-82380-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics