Skip to main content

Orienteering (with Time Windows) on Restricted Graph Classes

  • Conference paper
  • First Online:
SOFSEM 2025: Theory and Practice of Computer Science (SOFSEM 2025)

Abstract

Given a graph with edge costs and vertex profits and given a budget B, the Orienteering Problem asks for a walk of cost at most B of maximum profit. Additionally, each profit may be given with a time window within which it can be collected by the walk. While the Orienteering Problem and thus the version with time windows are NP-hard in general, it remains open on numerous special graph classes. Since in several applications, especially for planning a route from A to B with waypoints, the input graph can be restricted to tree-like or path-like structures, in this paper we consider orienteering on these graph classes. While the Orienteering Problem with time windows is NP-hard even on undirected paths and cycles, and remains so even if all profits must be collected, we show that for directed paths it can be solved in \(\mathcal {O}(m \log m)\) time (where m is the total number of time windows), even if each profit can be collected in one of several time windows. The same case is shown to be NP-hard for directed cycles.

Particularly interesting is the Orienteering Problem on a directed cycle with one time window per profit. We give an efficient algorithm for the case where all time windows are shorter than the length of the cycle, resulting in a 2-approximation for the general setting. Based on the algorithm for directed paths, we further develop a polynomial-time approximation scheme for this problem. For the case where all profits must be collected, we present an \(\mathcal {O}(n^4)\)-time algorithm. For the Orienteering Problem with time windows for the edges, we give a quadratic time algorithm for undirected paths and observe that the problem is NP-hard for trees.

In the variant without time windows, we show that on trees and thus on graphs with bounded tree-width the Orienteering Problem remains NP-hard. We present, however, an FPT algorithm to solve orienteering with unit profits that we then use to obtain a (\(1+\varepsilon \))-approximation algorithm on graphs with arbitrary profits and bounded tree-width, which improves current results on general graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(^*\) The proofs of the results marked with \(*\) are deferred to the full version of this paper [9].

References

  1. Abeledo, H.G., Fukasawa, R., Pessoa, A.A., Uchoa, E.: The time dependent traveling salesman problem: polyhedra and algorithm. Math. Program. Comput. 5(1), 27–55 (2013). https://doi.org/10.1007/S12532-012-0047-Y

    Article  MathSciNet  MATH  Google Scholar 

  2. Archetti, C., Speranza, M.G., Vigo, D.: Vehicle routing problems with profits. In: Vehicle Routing: Problems, Methods, and Applications, 2nd edn., pp. 273–297. SIAM (2014). https://doi.org/10.1137/1.9781611973594.ch10

  3. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for deadline-TSP and vehicle routing with time-windows. In: Babai, L. (ed.) Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, 13–16 June 2004, pp. 166–174. ACM (2004). https://doi.org/10.1145/1007352.1007385

  4. Bateni, M., Chekuri, C., Ene, A., Hajiaghayi, M.T., Korula, N., Marx, D.: Prize-collecting Steiner problems on planar graphs. In: Proceedings of 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1028–1049. SIAM (2011). https://doi.org/10.1137/1.9781611973082.79

  5. Bigras, L., Gamache, M., Savard, G.: The time-dependent traveling salesman problem and single machine scheduling problems with sequence dependent setup times. Disc. Optim. 5(4), 685–699 (2008). https://doi.org/10.1016/J.DISOPT.2008.04.001

    Article  MathSciNet  MATH  Google Scholar 

  6. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward TSP. SIAM J. Comput. 37(2), 653–670 (2007). https://doi.org/10.1137/050645464

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996). https://doi.org/10.1137/S0097539793251219

    Article  MathSciNet  MATH  Google Scholar 

  8. Buchin, K., Hagedoorn, M., Li, G.: Tour4me: a framework for customized tour planning algorithms. In: Proceedings of the 30th International Conference on Advances in Geographic Information Systems. SIGSPATIAL 2022. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3557915.3560992

  9. Buchin, K., Hagedoorn, M., Li, G., Rehs, C.: Orienteering (with time windows) on restricted graph classes (2024). https://arxiv.org/abs/2410.12401

  10. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related problems. ACM Trans. Algor. (TALG) 8(3), 1–27 (2012). https://doi.org/10.1145/2229163.2229167

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, K., Har-Peled, S.: The euclidean orienteering problem revisited. SIAM J. Comput. 38(1), 385–397 (2008). https://doi.org/10.1137/060667839

    Article  MathSciNet  MATH  Google Scholar 

  12. Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits. Transp. Sci. 39(2), 188–205 (2005). https://doi.org/10.1287/trsc.1030.0079

    Article  MATH  Google Scholar 

  13. Fischetti, M., Gonzalez, J.J., Toth, P.: Solving the orienteering problem through branch-and-cut. INFORMS J. Comput. 10(2), 133–148 (1998). https://doi.org/10.1287/ijoc.10.2.133

    Article  MathSciNet  MATH  Google Scholar 

  14. Garg, N., Khanna, S., Kumar, A.: Hardness of approximation for orienteering with multiple time windows. In: Marx, D. (ed.) Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, 10–13 January 2021, pp. 2977–2990. SIAM (2021). https://doi.org/10.1137/1.9781611976465.177

  15. Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., Vathis, N.: Approximation algorithms for the arc orienteering problem. Inf. Process. Lett. 115(2), 313–315 (2015). https://doi.org/10.1016/j.ipl.2014.10.003

    Article  MathSciNet  MATH  Google Scholar 

  16. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logist. (NRL) 34(3), 307–318 (1987). https://doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D

    Article  MATH  Google Scholar 

  17. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2), 315–332 (2016). https://doi.org/10.1016/J.EJOR.2016.04.059

    Article  MathSciNet  MATH  Google Scholar 

  18. Korula, N.: Approximation algorithms for network design and orienteering. University of Illinois at Urbana-Champaign (2010). https://www.ideals.illinois.edu/items/16799

  19. Korula, N.: Orienteering problems. In: Encyclopedia of Algorithms, pp. 1481–1484. Springer, Heidelberg (2016). https://doi.org/10.1007/978-1-4939-2864-4_540

  20. Laporte, G., Martello, S.: The selective travelling salesman problem. Disc. Appl. Math. 26(2), 193–207 (1990). https://doi.org/10.1016/0166-218X(90)90100-Q

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu, Y., et al.: Scenic routes now: efficiently solving the time-dependent arc orienteering problem. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 487–496 (2017). https://doi.org/10.1145/3132847.3132874

  22. Lu, Y., Shahabi, C.: An arc orienteering algorithm to find the most scenic path on a large-scale road network. In: Proceedings of 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–10 (2015). https://doi.org/10.1145/2820783.2820835

  23. Ramesh, R., Yoon, Y.S., Karwan, M.H.: An optimal algorithm for the orienteering tour problem. ORSA J. Comput. 4(2), 155–165 (1992). https://doi.org/10.1287/ijoc.4.2.155

    Article  MATH  Google Scholar 

  24. Ren, K., Salavatipour, M.R.: Approximation schemes for orienteering and deadline tsp in doubling metrics. arXiv preprint arXiv:2405.00818 (2024)

  25. Souffriau, W., Vansteenwegen, P., Vertommen, J., Vanden Berghe, G.: A personalized tourist trip design algorithm for mobile tourist guides. Appl. Artif. Intell. 22, 964–985 (2008). https://doi.org/10.1080/08839510802379626

  26. Stavropoulou, F., Repoussis, P.P., Tarantilis, C.D.: The vehicle routing problem with profits and consistency constraints. Eur. J. Oper. Res. 274(1), 340–356 (2019). https://doi.org/10.1016/j.ejor.2018.09.046

    Article  MathSciNet  MATH  Google Scholar 

  27. Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9), 797–809 (1984). https://doi.org/10.2307/2582629

    Article  MATH  Google Scholar 

  28. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems with time windows. Networks 22(3), 263–282 (1992). https://doi.org/10.1002/NET.3230220305

    Article  MathSciNet  MATH  Google Scholar 

  29. Vansteenwegen, P., Souffriau, W., Oudheusden, D.V.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011). https://doi.org/10.1016/j.ejor.2010.03.045

    Article  MathSciNet  MATH  Google Scholar 

  30. Vansteenwegen, P., Van Oudheusden, D.: The mobile tourist guide: an or opportunity. OR insight 20, 21–27 (2007). https://doi.org/10.1057/ori.2007.17

    Article  MATH  Google Scholar 

  31. Verbeeck, C., Vansteenwegen, P., Aghezzaf, E.H.: An extension of the arc orienteering problem and its application to cycle trip planning. Transp. Res. Part E 68, 64–78 (2014). https://doi.org/10.1016/j.tre.2014.05.006

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mart Hagedoorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buchin, K., Hagedoorn, M., Li, G., Rehs, C. (2025). Orienteering (with Time Windows) on Restricted Graph Classes. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82670-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82669-6

  • Online ISBN: 978-3-031-82670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics