Skip to main content

Massively Parallel Maximum Coverage Revisited

  • Conference paper
  • First Online:
SOFSEM 2025: Theory and Practice of Computer Science (SOFSEM 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15538))

  • 9 Accesses

Abstract

We study the maximum set coverage problem in the massively parallel model. In this setting, m sets that are subsets of a universe of n elements are distributed among m machines. In each round, these machines can communicate with each other, subject to the memory constraint that no machine may use more than \(\tilde{O} \left( n \right) \) memory. The objective is to find the k sets whose coverage is maximized. We consider the regime where \(k = \Omega (m)\) (i.e., \(k = m/100\)), \(m = O(n)\), and each machine has \(\tilde{O} \left( n \right) \) memory\(^1\).

Maximum coverage is a special case of the submodular maximization problem subject to a cardinality constraint. This problem can be approximated to within a \(1-1/e\) factor using the greedy algorithm, but this approach is not directly applicable to parallel and distributed models. When \(k = \Omega (m)\), to obtain a \(1-1/e-\epsilon \) approximation, previous work either requires \(\tilde{O} \left( mn \right) \) memory per machine which is not interesting compared to the trivial algorithm that sends the entire input to a single machine, or requires \(2^{O(1/\epsilon )} n\) memory per machine which is prohibitively expensive even for a moderately small value \(\epsilon \).

Our result is a randomized \((1-1/e-\epsilon )\)-approximation algorithm that uses

$$\begin{aligned} O(1/\epsilon ^3 \cdot \log m \cdot (\log (1/\epsilon ) + \log m)) \end{aligned}$$

rounds. Our algorithm involves solving a slightly transformed linear program of the maximum coverage problem using the multiplicative weights update method, classic techniques in parallel computing such as parallel prefix, and various combinatorial arguments.

This work is supported by the National Science Foundation under Grant No. 2342527.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The input size is O(mn) and each machine has the memory enough to store a constant number of sets.

References

  1. Anagnostopoulos, A., Becchetti, L., Bordino, I., Leonardi, S., Mele, I., Sankowski, P.: Stochastic query covering for fast approximate document retrieval. ACM Trans. Inf. Syst. 33(3), 11:1–11:35 (2015)

    Google Scholar 

  2. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and applications. Theory Comput. 8(1), 121–164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Assadi, S.: Tight space-approximation tradeoff for the multi-pass streaming set cover problem. In: PODS, pp. 321–335. ACM (2017)

    Google Scholar 

  4. Assadi, S., Khanna, S.: Tight bounds on the round complexity of the distributed maximum coverage problem. In: SODA, pp. 2412–2431. SIAM (2018)

    Google Scholar 

  5. Assadi, S., Khanna, S., Li, Y.: Tight bounds for single-pass streaming complexity of the set cover problem. SIAM J. Comput. 50(3) (2021)

    Google Scholar 

  6. Cervenjak, P., Gan, J., Umboh, S.W., Wirth, A.: Maximum unique coverage on streams: improved FPT approximation scheme and tighter space lower bound. In: APPROX/RANDOM. LIPIcs, vol. 317, pp. 25:1–25:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2024)

    Google Scholar 

  7. Chakrabarti, A., McGregor, A., Wirth, A.: Improved algorithms for maximum coverage in dynamic and random order streams. CoRR abs/2403.14087 (2024)

    Google Scholar 

  8. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Har-Peled, S., Indyk, P., Mahabadi, S., Vakilian, A.: Towards tight bounds for the streaming set cover problem. In: PODS, pp. 371–383. ACM (2016)

    Google Scholar 

  10. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of maximum k-coverage. Naval Res. Logistics (NRL) 45(6), 615–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Indyk, P., Mahabadi, S., Rubinfeld, R., Ullman, J.R., Vakilian, A., Yodpinyanee, A.: Fractional set cover in the streaming model. In: APPROX-RANDOM. LIPIcs, vol. 81, pp. 12:1–12:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  12. Indyk, P., Vakilian, A.: Tight trade-offs for the maximum k-coverage problem in the general streaming model. In: PODS, pp. 200–217. ACM (2019)

    Google Scholar 

  13. Jaud, S., Wirth, A., Choudhury, F.M.: Maximum coverage in sublinear space, faster. In: SEA. LIPIcs, vol. 265, pp. 21:1–21:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

    Google Scholar 

  14. Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In: SODA, pp. 938–948. SIAM (2010)

    Google Scholar 

  15. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. Theory Comput. 11, 105–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khanna, S., Konrad, C., Alexandru, C.: Set cover in the one-pass edge-arrival streaming model. In: PODS, pp. 127–139. ACM (2023)

    Google Scholar 

  17. Krause, A., Guestrin, C.: Near-optimal observation selection using submodular functions. In: AAAI, pp. 1650–1654. AAAI Press (2007)

    Google Scholar 

  18. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in MapReduce and streaming. ACM Trans. Parallel Comput. 2(3), 14:1–14:22 (2015)

    Google Scholar 

  19. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, P., Vondrák, J.: Submodular optimization in the MapReduce model. In: SOSA. OASIcs, vol. 69, pp. 18:1–18:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  21. McGregor, A., Tench, D., Vu, H.T.: Maximum coverage in the data stream model: Parameterized and generalized. In: ICDT. LIPIcs, vol. 186, pp. 12:1–12:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  22. McGregor, A., Vu, H.T.: Better streaming algorithms for the maximum coverage problem. Theory Comput. Syst. 63(7), 1595–1619 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. da Ponte Barbosa, R., Ene, A., Nguyen, H.L., Ward, J.: A new framework for distributed submodular maximization. In: FOCS, pp. 645–654. IEEE Computer Society (2016)

    Google Scholar 

  24. Saha, B., Getoor, L.: On maximum coverage in the streaming model & application to multi-topic blog-watch. In: SDM, pp. 697–708. SIAM (2009)

    Google Scholar 

  25. Warneke, R., Choudhury, F.M., Wirth, A.: Maximum coverage in random-arrival streams. In: ESA. LIPIcs, vol. 274, pp. 102:1–102:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoa T. Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bui, T., Vu, H.T. (2025). Massively Parallel Maximum Coverage Revisited. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82670-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82669-6

  • Online ISBN: 978-3-031-82670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics