Abstract
Identifying and mitigating the spread of fake information is a challenging issue that has become dominant with the rise of social media. We consider a generalization of the Domination problem that can be used to detect a set of individuals who, once immunized, can prevent the spreading of fake narratives. The considered problem, named Distance Vector Domination generalizes both distance and multiple domination, at individual (i.e., vertex) level. We study the parameterized complexity of the problem according to several standard and structural parameters. We prove the W[1]-hardness of the problem with respect to neighborhood diversity, even when all the distances are 1. We also give fixed-parameter algorithms for some variants of the problem and parameter combinations.
Work partially supported by project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
For a positive integer a, we use [a] to denote the set of integers \([a] = \{1, 2, \ldots , a\}\).
References
Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 404, 378–382 (2000)
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)
Banerjee, S., Jenamani, M., Pratihar, D.K.: A survey on influence maximization in a social network. Knowl. Inf. Syst. 62, 3417–3455 (2020). https://doi.org/10.1007/s10115-020-01461-4
Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discret. Optim. 8(1), 87–96 (2011)
Bermond, J.-C., Gargano, L., Rescigno, A.A.: Gathering with minimum delay in tree sensor networks. In: Proceedings of SIROCCO’08, LNCS 5058, pp. 262–276 (2008)
Bodlaender, H.L., Kloks, T.: Better algorithms for the pathwidth and treewidth of graphs. In: Proceedings of ICALP’91, LNCS 510, pp. 544–555 (1991)
Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On Bounded-Degree Vertex Deletion parameterized by treewidth. Discret. Appl. Math. 160(1–2), 53–60 (2012)
Borradaile, G., Le, H.: Optimal dynamic program for R-domination problems over tree decompositions. In: Proceedings of 11th International Symposium on Parameterized and Exact Computation, IPEC, LIPIcs, vol. 63, pp. 8:1–8:23 (2016)
Chong, C.-Y., Kumar, S.P.: Sensor networks: Evolution, opportunities, and challenges. Proc. IEEE 91(8), 1247–1256 (2003)
Cicalese, F., Milanic, M., Vaccaro, U.: On the approximability and exact algorithms for vector domination and related problems in graphs. Discrete Appl. Math. 161, 750–767 (2013)
Cicalese, F., Cordasco, G., Gargano, L., Milanic, M., Vaccaro, U.: Latency-bounded target set selection in social networks. Theoret. Comput. Sci. 535, 1–15 (2014)
Cordasco, G., Gargano, L., Mecchia, M., Rescigno, A.A., Vaccaro, U.: A fast and effective heuristic for discovering small target sets in social networks. In: Proceedings of the 9th International Conference on Combinatorial Optimization and Applications (COCOA) (2015)
Cordasco, G., Gargano, L., Rescigno, A.A.: Influence propagation over large scale social networks. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM’15), pp. 1531–1538 (2015)
Cordasco, G., Gargano, L., Rescigno, A.A.: On finding small sets that influence large networks. Soc. Netw. Anal. Min. 6(11) (2016)
Cordasco, G., Gargano, L., Mecchia, M., Rescigno, A.A., Vaccaro, U.: Discovering small target sets in social networks: a fast and effective algorithm. Algorithmica 80(6), 1804–1833 (2018)
Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Evangelism in social networks: algorithms and complexity. Networks 71(4), 346–357 (2018)
Cordasco, G., Gargano, L., Rescigno, A.A.: Active influence spreading in social networks. Theoret. Comput. Sci. 764, 15–29 (2019)
Cordasco, G., et al.: Whom to befriend to influence people. Theoret. Comput. Sci. 810, 26–42 (2020)
Cordasco, G., Gargano, L., Rescigno, A.A.: Parameterized complexity for iterated type partitions and modular-width. Discrete Appl. Math., 350 (2024)
Corneil, D., Habib, M., Paul, C., Tedder, M.: A recursive linear time modular decomposition algorithm via LexBFS. arXiv:0710.3901 [cs.DM] (2024)
Courcelle, B.: The monadic second-order logic of graphs recognizable sets of finite graphs. Inform. Comput. 85(1), 12–75 (1990)
Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret. Appl. Math. 101(1), 77–114 (2000)
Cygan, M., et al.: Parameterized Algorithms. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Dasgupta, K., Kukreja, M., Kalpakis, K.: Topology-aware placement and role assignment for energy-efficient information gathering in sensor networks. In Proceedings of IEEE Symposium on Computers and Communications, pp. 341–348 (2003)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-0515-9
Dvorák, P., Knop, D., Toufar, T.: Target set selection in dense graph classes. In: Proceedings of 29th International Symposium on Algorithms and Computation (ISAAC’18) (2018). https://doi.org/10.4230/LIPIcs.ISAAC.2018.18
Fink, J.F., Jacobson, M.S.: n-Domination in Graphs. Graph Theory with Applications to Algorithms and Computer Science. John Wiley & Sons, pp. 283–300 (1985)
Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: Proceedings of 8th International Symposium on Parameterized and Exact Computation (IPEC 2013), LNCS 8246, pp. 163–176 (2013)
Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hungarica 18, 26–66 (1967)
Ganian, R.: Using Neighborhood Diversity to Solve Hard Problems. arXiv 2012 (2012). arXiv:1201.3091
Granovetter, M.: Threshold models of collective behaviors. Am. J. Sociol. 83(6), 1420–1443 (1978)
Goddard, W., Henning, M.A.: Restricted domination parameters in graphs. J. Comb. Optim. 13, 353–363 (2007)
Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs, Marcel Dekker (1998)
Haynes, T.W., Hedetniemi, S., Slater, P. (Eds.). Domination in Graphs: Advanced Topics, Marcel Dekker (1998)
Harant, J., Prochnewski, A., Voigt, M.: On dominating sets and independent sets of graphs. Comb. Probab. Comput. 8, 547–553 (1999)
Henning, M.A.: Distance domination in graphs. In: Topics in Domination in Graphs. Developments in Mathematics, vol. 64 (2020). https://doi.org/10.1007/978-3-030-51117-3_7
Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727
Ishii, T., Ono, H., Uno, Y.: (Total) Vector domination for graphs with bounded branchwidth. Discret. Appl. Math. 207, 80–89 (2016)
Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters, tight bounds, and approximation for (k, r)-center. Discr. App. Math. 264, 90–117 (2019)
Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of KDD’03, pp. 137–146 (2003)
Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Discov. Data 3(2) (2009)
Kloks, T.: Treewidth Computations and Approximations. LNCS 842, Springer-Verlag Berlin, Heidelberg (1994). ISSN 0302-9743, https://doi.org/10.1007/BFb0045375
Lafond, M., Luo, W.: Parameterized complexity of domination problems using restricted modular partitions. In: MFCS 2023, pp. 61:1–61:14 (2023)
Lamblet Mafort, R., Protti, F.: Vector Domination in split-indifference graphs. Inf. Process. Lett., 155 (2020). ISSN 0020-0190
Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64, 19–37 (2012)
Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer viruses. Phys. Rev. E 66 (2002)
Raman, V., Saurabh, S., Srihari, S.: Parameterized algorithms for generalized domination. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 116–126. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85097-7_11
Romanek, M.: Parameterized algorithms for modular-width. Bachelor’s Thesis (2016)
Slater, P.J.: R-domination in graphs. J. Assoc. Comp. Mach. 23(3), 446–450 (1976)
Li, P., Wang, A., Shang, J.: A simple optimal algorithm for k-tuple dominating problem in interval graphs. J. Comb. Optim. 45(14) (2023)
Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2, 385–393 (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cordasco, G., Gargano, L., Rescigno, A.A. (2025). Distance Vector Domination. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-82670-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82669-6
Online ISBN: 978-3-031-82670-2
eBook Packages: Computer ScienceComputer Science (R0)