Abstract
We study the classical problem of computing geometric thickness, i.e., finding a straight-line drawing of an input graph and a partition of its edges into as few parts as possible so that each part is crossing-free. Since the problem is NP-hard, we investigate its tractability through the lens of parameterized complexity. As our first set of contributions, we provide two fixed-parameter algorithms which utilize well-studied parameters of the input graph, notably the vertex cover and feedback edge numbers. Since parameterizing by the thickness itself does not yield tractability and the use of other structural parameters remains open due to general challenges identified in previous works, as our second set of contributions, we propose a different pathway to tractability for the problem: extension of partial solutions. In particular, we establish a full characterization of the problem’s parameterized complexity in the extension setting depending on whether we parameterize by the number of missing vertices, edges, or both.
All authors acknowledge support from the Vienna Science and Technology Fund (WWTF) [10.47379/ICT22029]. Robert Ganian and Alexander Firbas also acknowledge support from the Austrian Science Fund (FWF) [10.55776/Y1329].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Angelini, P., et al.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), 32:1–32:42 (2015). https://doi.org/10.1145/2629341
Balabán, J., Ganian, R., Rocton, M.: Computing twin-width parameterized by the feedback edge number. In: Beyersdorff, O., Kanté, M.M., Kupferman, O., Lokshtanov, D. (eds.) 41st International Symposium on Theoretical Aspects of Computer Science, STACS 2024, March 12-14, 2024, Clermont-Ferrand, France. LIPIcs, vol. 289, pp. 7:1–7:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2024). https://doi.org/10.4230/LIPICS.STACS.2024.7
Balko, M., Chaplick, S., Ganian, R., Gupta, S., Hoffmann, M., Valtr, P., Wolff, A.: Bounding and computing obstacle numbers of graphs. In: Chechik, S., Navarro, G., Rotenberg, E., Herman, G. (eds.) 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany. LIPIcs, vol. 244, pp. 11:1–11:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.ESA.2022.11
Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. In: Dehne, F., Solis-Oba, R., Sack, J.R. (eds.) Algorithms and Data Structures, pp. 97–108. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_9
Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. J. Graph Algorithms Appl. 22(1), 23–49 (2018). https://doi.org/10.7155/JGAA.00457
Beineke, L.W., Harary, F.: The thickness of the complete graph. Can. J. Math. 17, 850–859 (1965)
Bhore, S., Ganian, R., Khazaliya, L., Montecchiani, F., Nöllenburg, M.: Extending orthogonal planar graph drawings is fixed-parameter tractable. In: Chambers, E.W., Gudmundsson, J. (eds.) 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA. LIPIcs, vol. 258, pp. 18:1–18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.SOCG.2023.18
Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms for book embedding problems. J. Graph Algorithms Appl. 24(4), 603–620 (2020). https://doi.org/10.7155/JGAA.00526
Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms for queue layouts. J. Graph Algorithms Appl. 26(3), 335–352 (2022). https://doi.org/10.7155/JGAA.00597
Binucci, C., et al.: On the complexity of the storyplan problem. J. Comput. Syst. Sci. 139, 103466 (2024). https://doi.org/10.1016/J.JCSS.2023.103466
Brand, C., Ganian, R., Röder, S., Schager, F.: Fixed-parameter algorithms for computing RAC drawings of graphs. In: Bekos, M.A., Chimani, M. (eds.) Graph Drawing and Network Visualization - 31st International Symposium, GD 2023, Isola delle Femmine, Palermo, Italy, September 20-22, 2023, Revised Selected Papers, Part II. Lecture Notes in Computer Science, vol. 14466, pp. 66–81. Springer (2023). https://doi.org/10.1007/978-3-031-49275-4_5
Brandenburg, F., Eppstein, D., Goodrich, M.T., Kobourov, S., Liotta, G., Mutzel, P.: Selected open problems in graph drawing. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_55
Cheong, O., Pfister, M., Schlipf, L.: The thickness of fan-planar graphs is at most three. In: Angelini, P., von Hanxleden, R. (eds.) Graph Drawing and Network Visualization - 30th International Symposium, GD 2022, Tokyo, Japan, September 13-16, 2022, Revised Selected Papers. Lecture Notes in Computer Science, vol. 13764, pp. 247–260. Springer (2022). https://doi.org/10.1007/978-3-031-22203-0_18
Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H
Cygan, M., et al.: Parameterized Algorithms. Springer (2015). https://doi.org/10.1007/978-3-319-21275-3
Depian, T., Fink, S.D., Firbas, A., Ganian, R., Nöllenburg, M.: Pathways to tractability for geometric thickness (2024). https://arxiv.org/abs/2411.15864
Depian, T., Fink, S.D., Ganian, R., Nöllenburg, M.: The parameterized complexity of extending stack layouts. In: Proceedings of the 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Vienna, Austria (2024). https://doi.org/10.4230/LIPIcs.GD.2024.12
Diestel, R.: Graph Theory, 4th Edition, Graduate texts in mathematics, vol. 173. Springer (2012)
Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete graphs. J. Graph Algorithms Appl. 4(3), 5–17 (2000). https://doi.org/10.7155/JGAA.00023
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science, Springer (2013). https://doi.org/10.1007/978-1-4471-5559-1
Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parameters. Discret. Comput. Geom. 37(4), 641–670 (2007). https://doi.org/10.1007/S00454-007-1318-7
Durocher, S., Gethner, E., Mondal, D.: Thickness and colorability of geometric graphs. Comput. Geom. 56, 1–18 (2016). https://doi.org/10.1016/J.COMGEO.2016.03.003
Durocher, S., Mondal, D.: Relating graph thickness to planar layers and bend complexity. SIAM J. Discret. Math. 32(4), 2703–2719 (2018). https://doi.org/10.1137/16M1110042
Eiben, E., Ganian, R., Hamm, T., Klute, F., Nöllenburg, M.: Extending nearly complete 1-planar drawings in polynomial time. In: Esparza, J., Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic. LIPIcs, vol. 170, pp. 31:1–31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPICS.MFCS.2020.31
Eiben, E., Ganian, R., Hamm, T., Klute, F., Nöllenburg, M.: Extending partial 1-planar drawings. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference). LIPIcs, vol. 168, pp. 43:1–43:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPICS.ICALP.2020.43
Eppstein, D.: Separating thickness from geometric thickness. In: Kobourov, S.G., Goodrich, M.T. (eds.) Graph Drawing, 10th International Symposium, GD 2002, Irvine, CA, USA, August 26-28, 2002, Revised Papers. Lecture Notes in Computer Science, vol. 2528, pp. 150–161. Springer (2002). https://doi.org/10.1007/3-540-36151-0_15
Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S., Nagamochi, H., Fukunaga, T. (eds.) Algorithms and Computation, 19th International Symposium, ISAAC 2008, Gold Coast, Australia, December 15–17, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5369, pp. 294–305. Springer (2008). https://doi.org/10.1007/978-3-540-92182-0_28
Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized by vertex cover and modular width, through potential maximal cliques. Algorithmica 80(4), 1146–1169 (2018). https://doi.org/10.1007/S00453-017-0297-1
Förster, H., Kindermann, P., Miltzow, T., Parada, I., Terziadis, S., Vogtenhuber, B.: Geometric thickness of multigraphs is \(\exists \mathbb{R}\)-complete. In: Soto, J.A., Wiese, A. (eds.) LATIN 2024: Theoretical Informatics - 16th Latin American Symposium, Puerto Varas, Chile, March 18-22, 2024, Proceedings, Part I. Lecture Notes in Computer Science, vol. 14578, pp. 336–349. Springer (2024). https://doi.org/10.1007/978-3-031-55598-5_22
Ganian, R., Hamm, T., Klute, F., Parada, I., Vogtenhuber, B.: Crossing-optimal extension of simple drawings. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference). LIPIcs, vol. 198, pp. 72:1–72:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPICS.ICALP.2021.72
Ganian, R., Montecchiani, F., Nöllenburg, M., Zehavi, M.: Parameterized complexity in graph drawing (dagstuhl seminar 21293). Dagstuhl Rep. 11(6), 82–123 (2021). https://doi.org/10.4230/DAGREP.11.6.82
Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.): Handbook of discrete and computational geometry. Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, third edn. (2018)
Grigoryev, D.Y., Vorobjov, N.N., Jr.: Counting connected components of a semialgebraic set in subexponential time. Comput. Complex. 2, 133–186 (1992). https://doi.org/10.1007/BF01202001
Jain, R., Ricci, M., Rollin, J., Schulz, A.: On the geometric thickness of 2-degenerate graphs. In: Chambers, E.W., Gudmundsson, J. (eds.) 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA. LIPIcs, vol. 258, pp. 44:1–44:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.SOCG.2023.44
Mansfield, A.: Determining the thickness of graphs is np-hard. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 93, pp. 9–23. Cambridge University Press (1983)
Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: a survey. Graphs Comb. 14(1), 59–73 (1998). https://doi.org/10.1007/PL00007219
Nešetřil, J., de Mendez, P.O.: Sparsity. Algorithms and Combinatorics 28, xxiv+–457 (2012). https://doi.org/10.1007/978-3-642-27875-4
Nesetril, J., de Mendez, P.O.: Sparsity - Graphs, Structures, and Algorithms, Algorithms and Combinatorics, vol. 28. Springer (2012). https://doi.org/10.1007/978-3-642-27875-4
Robertson, N., Seymour, P.D.: Graph minors. i. excluding a forest. J. Comb. Theory, Ser. B 35(1), 39–61 (1983). https://doi.org/10.1016/0095-8956(83)90079-5
Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-4
Schaefer, M.: Complexity of some geometric and topological problems. In: Eppstein, D., Gansner, E.R. (eds.) Graph Drawing (GD’09). LNCS, vol. 5849, pp. 334–344. Springer (2009). https://doi.org/10.1007/978-3-642-11805-0_32
Toth, C.D., O’Rourke, J., Goodman, J.E.: Handbook of discrete and computational geometry. CRC Press (2017)
Tutte, W.T.: The thickness of a graph. Indag. Math. 25, 561–577 (1963)
Zehavi, M.: Parameterized analysis and crossing minimization problems. Comput. Sci. Rev. 45, 100490 (2022). https://doi.org/10.1016/J.COSREV.2022.100490
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Depian, T., Fink, S.D., Firbas, A., Ganian, R., Nöllenburg, M. (2025). Pathways to Tractability for Geometric Thickness. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-82670-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82669-6
Online ISBN: 978-3-031-82670-2
eBook Packages: Computer ScienceComputer Science (R0)