Abstract
For any finite set \(\mathcal {H} = \{H_1,\ldots ,H_p\}\) of graphs, a graph is \(\mathcal {H}\)-subgraph-free if it does not contain any of \(H_1,\ldots ,H_p\) as a subgraph. In this invited talk, I discuss a recently proposed algorithmic meta classification that precisely classifies if certain problems (sharing specific properties) are “efficiently solvable” or “computationally hard” for \(\mathcal {H}\)-subgraph-free graphs, depending on \(\mathcal {H}\). For a broad set of classic graph problems, this framework yields a dichotomy (depending on \(\mathcal {H}\)) between polynomial-time solvability and NP-completeness. For other problems, like computing the diameter of a graph, it gives a dichotomy between almost-linear-time solvability and having no subquadratic-time algorithm (conditioned on some hardness hypotheses). This paper discusses this framework, highlights current developments and open problems, and surveys recent insights into the complexity on \(\mathcal {H}\)-subgraph-free graphs of problems that do not fall within the framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alekseev, V.E., Boliac, R., Korobitsyn, D.V., Lozin, V.V.: NP-hard graph problems and boundary classes of graphs. Theor. Comput. Sci. 389, 219–236 (2007)
Alekseev, V.E., Korobitsyn, D.V.: Complexity of some problems on hereditary graph classes. Diskret. Mat. 4, 34–40 (1992)
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algor. 12, 308–340 (1991)
Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial \(k\)-trees. Disc. Appl. Math. 23, 11–24 (1989)
Barefoot, C.A., Entringer, R., Swart, H.: Vulnerability in graphs - a comparative survey. J. Comb. Math. Comb. Comput. 1, 13–22 (1987)
Bateni, M., Hajiaghayi, M.T., Marx, D.: Approximation schemes for steiner forest on planar graphs and graphs of bounded treewidth. J. ACM 58, 21:1–21:37 (2011)
Bienstock, D., Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a forest. J. Comb. Theory Ser. B 52, 274–283 (1991)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1–45 (1998)
Bodlaender, H.L., Brettell, N., Johnson, M., Paesani, G., Paulusma, D., van Leeuwen, E.J.: Steiner trees for hereditary graph classes: a treewidth perspective. Theor. Comput. Sci. 867, 30–39 (2021)
Bodlaender, H.L.: Subgraph Isomorphism on graph classes that exclude a substructure. Algorithmica 82, 3566–3587 (2020)
Bodlaender, H.L., et al.: Complexity framework for forbidden subgraphs IV: the steiner forest problem. In: Proceedings of IWOCA 2024. LNCS, vol. 14764, pp. 206–217. Springer, Heidelberg (2024). DOI: https://doi.org/10.1007/978-3-031-63021-7_16
Bui-Xuan, B., Telle, J.A., Vatshelle, M.: Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems. Theor. Comput. Sci. 511, 66–76 (2013)
Bulteau, L., Dabrowski, K.K., Köhler, N., Ordyniak, S., Paulusma, D.: An algorithmic framework for locally constrained homomorphisms. In: Proceedings of WG 2022. LNCS, vol. 13453, pp. 114–128. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15914-5_9
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990)
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33, 125–150 (2000)
Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015)
de Ridder, H.N., et al.: Information System on Graph Classes and their Inclusions (ISGCI) (2001–2024). https://www.graphclasses.org/
Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. Comput. J. 51, 292–302 (2008)
Drange, P.G., Dregi, M.S., van’t Hof, P.: On the computational complexity of vertex integrity and component order connectivity. Algorithmica 76, 1181–1202 (2016)
Dvorák, P., Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Solving integer linear programs with a small number of global variables and constraints. Proc. IJCAI 2017, 607–613 (2017)
Eagling-Vose, T., Martin, B., Paulusma, D., Smith, S.: Graph homomorphism, monotone classes and bounded pathwidth. In: Proceedings of CiE 2024. LNCS, vol. 14773, pp. 233–251 (2024). https://doi.org/10.1007/978-3-031-64309-5_19
Feldmann, A.E., Lampis, M.: Parameterized algorithms for steiner forest in bounded width graphs. In: Proceedings of ICALP 2024. LIPIcs, vol. 272, pp. 61:1–61:20 (2024)
Fomin, F.V., Demaine, E.D., Hajiaghayi, M.T., Thilikos, D.M.: Bidimensionality. In: Encyclopedia of Algorithms, pp. 203–207 (2016)
Fujita, S., Furuya, M.: Safe number and integrity of graphs. Disc. Appl. Math. 247, 398–406 (2018)
Fujita, S., MacGillivray, G., Sakuma, T.: Safe set problem on graphs. Disc. Appl. Math. 215, 106–111 (2016)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
Garey, M.R., Johnson, D.S., Tarjan, R.E.: The Planar Hamiltonian Circuit problem is NP-complete. SIAM J. Comput. 5, 704–714 (1976)
Gassner, E.: The Steiner Forest problem revisited. J. Disc. Algor. 8, 154–163 (2010)
Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap between treedepth and vertex cover through vertex integrity. Theor. Comput. Sci. 918, 60–76 (2022)
Golovach, P.A., Paulusma, D.: List coloring in the absence of two subgraphs. Disc. Appl. Math. 166, 123–130 (2014)
Golovach, P.A., Paulusma, D., Ries, B.: Coloring graphs characterized by a forbidden subgraph. Disc. Appl. Math. 180, 101–110 (2015)
Hickingbotham, R.: Induced subgraphs and path decompositions. Electron. J. Comb. 30 (2023)
Johnson, M., et al.: Complexity framework for forbidden subgraphs I: the framework. Algorithmica (2025)
Johnson, M., Martin, B., Pandey, S., Paulusma, D., Smith, S., van Leeuwen, E.J.: Complexity framework for forbidden subgraphs III: when problems are polynomial on subcubic graphs. In: Proceedings of MFCS 2023. LIPIcs, vol. 272, pp. 57:1–57:15 (2023)
Johnson, M., Martin, B., Pandey, S., Paulusma, D., Smith, S., van Leeuwen, E.J.: Edge multiway cut and node multiway cut are NP-hard on subcubic graphs. In: Proceedings of SWAT 2024. LIPIcs, vol. 294, pp. 29:1–29:17 (2024)
Kamiński, M.: Max-Cut and containment relations in graphs. Theor. Comput. Sci. 438, 89–95 (2012)
Korpelainen, N., Lozin, V.V., Malyshev, D.S., Tiskin, A.: Boundary properties of graphs for algorithmic graph problems. Theor. Comput. Sci. 412, 3545–3554 (2011)
Lozin, V.: The Hamiltonian cycle problem and monotone classes. In: Proceedings of IWOCA 2024. LNCS, vol. 14764, pp. 460–471. Springer, Heidelberg (2024). https://doi.org/10.1007/978-3-031-63021-7_35
Lozin, V., et al.: Complexity framework for forbidden subgraphs II: edge subdivision and the “H”-graphs. In: Proceedings of ISAAC 2024. LNCS (2024)
Lozin, V., Razgon, I.: Tree-width dichotomy. Eur. J. Comb. 103, 103517 (2022)
Martin, B., Paulusma, D., Smith, S.: Hard problems that quickly become very easy. Inf. Process. Lett. 174, 106213 (2022)
Nešetřil, J., de Mendez, P.O.: Sparsity - Graphs, Structures, and Algorithms, Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012)
Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B 35, 39–61 (1983)
Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Comb. Theory Ser. B 41, 92–114 (1986)
Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Disc. Math. 72, 355–360 (1988)
Acknowledgments
I want to thank my coauthors of the works that motivated this invited talk: Hans Bodlaender, Matthew Johnson, Vadim Lozin, Barnaby Martin, Jelle Oostveen, Sukanya Pandey, Daniel Paulusma, Mark Siggers, and Siani Smith. I also want to thank Daniel Paulusma for helpful discussions on this paper and for suggesting Proposition 1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
van Leeuwen, E.J. (2025). Open Problems and Recent Developments on a Complexity Framework for Forbidden Subgraphs. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-82670-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82669-6
Online ISBN: 978-3-031-82670-2
eBook Packages: Computer ScienceComputer Science (R0)