Skip to main content

Outer-(ap)RAC Graphs

  • Conference paper
  • First Online:
SOFSEM 2025: Theory and Practice of Computer Science (SOFSEM 2025)

Abstract

An outer-RAC drawing of a graph is a straight-line drawing where all vertices are incident to the outer cell and all edge crossings occur at a right angle. If additionally, all crossing edges are either horizontal or vertical, we call the drawing outer-apRAC (ap for axis-parallel). A graph is outer-(ap)RAC if it admits an outer-(ap)RAC drawing. We investigate the class of outer-(ap)RAC graphs. We show that the outer-RAC graphs are a proper subset of the planar graphs with at most \(2.5n-4\) edges where n is the number of vertices. This density bound is tight, even for outer-apRAC graphs. Moreover, we provide an SPQR-tree based linear-time algorithm which computes an outer-RAC drawing for every given series-parallel graph of maximum degree four. As a complementing result, we present planar graphs of maximum degree four and series-parallel graphs of maximum degree five that are not outer-RAC. Finally, for series-parallel graphs of maximum degree three we show how to compute an outer-apRAC drawing in linear time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Originally, the slopes where defined as 0 and \(\infty \) in [3]. We use the rotated version \(\pm 1\) which will allow us to simplify our discussion in Sect. 5.

  2. 2.

    In the literature there exists another recursive definition for series-parallel graphs [26]. However, one can obtain biconnectivity by a parallel composition with a single edge.

  3. 3.

    When considering the edges incident to \(v_i\) in clockwise order starting from the direction in which we reach \(v_i\) along O(B) coming from \(v_{i-1}\).

References

  1. Angelini, P., Bekos, M.A., Förster, H., Kaufmann, M.: On RAC drawings of graphs with one bend per edge. Theor. Comput. Sci. 828–829, 42–54 (2020). https://doi.org/10.1016/J.TCS.2020.04.018

    Article  MathSciNet  MATH  Google Scholar 

  2. Angelini, P., Bekos, M.A., Katheder, J., Kaufmann, M., Pfister, M.: RAC drawings of graphs with low degree. In: Szeider, S., Ganian, R., Silva, A. (eds.) 47th Int. Symposium on Mathematical Foundations of Computer Science. MFCS 2022. LIPIcs, vol. 241, pp. 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.MFCS.2022.11,

  3. Angelini, P., Bekos, M.A., Katheder, J., Kaufmann, M., Pfister, M., Ueckerdt, T.: Axis-parallel right angle crossing graphs. In: Gørtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms. ESA 2023. LIPIcs, vol. 274, pp. 9:1–9:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.ESA.2023.9,

  4. Angori, L., Didimo, W., Montecchiani, F., Pagliuca, D., Tappini, A.: Hybrid graph visualizations with chordlink: algorithms, experiments, and applications. IEEE Trans. Vis. Comput. Graph. 28(2), 1288–1300 (2022). https://doi.org/10.1109/TVCG.2020.3016055

    Article  MATH  Google Scholar 

  5. Argyriou, E.N., Bekos, M.A., Kaufmann, M., Symvonis, A.: Geometric RAC simultaneous drawings of graphs. J. Graph Algorithms Appl. 17(1), 11–34 (2013). https://doi.org/10.7155/JGAA.00282

    Article  MathSciNet  MATH  Google Scholar 

  6. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012). https://doi.org/10.7155/JGAA.00274

    Article  MathSciNet  MATH  Google Scholar 

  7. Arikushi, K., Fulek, R., Keszegh, B., Moric, F., Tóth, C.D.: Graphs that admit right angle crossing drawings. Comput. Geom. 45(4), 169–177 (2012). https://doi.org/10.1016/J.COMGEO.2011.11.008

    Article  MathSciNet  MATH  Google Scholar 

  8. Auer, C., et al.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016). https://doi.org/10.1007/S00453-015-0002-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79(2), 401–427 (2017). https://doi.org/10.1007/S00453-016-0200-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48–57 (2017). https://doi.org/10.1016/J.TCS.2017.05.039

    Article  MathSciNet  MATH  Google Scholar 

  11. Bekos, M.A., van Dijk, T.C., Kindermann, P., Wolff, A.: Simultaneous drawing of planar graphs with right-angle crossings and few bends. J. Graph Algorithms Appl. 20(1), 133–158 (2016). https://doi.org/10.7155/JGAA.00388

    Article  MathSciNet  MATH  Google Scholar 

  12. Biedl, T.: Drawing outer-1-planar graphs revisited. J. Graph Algorithms Appl. 26(1), 59–73 (2022). https://doi.org/10.7155/JGAA.00581

    Article  MathSciNet  MATH  Google Scholar 

  13. Binucci, C., et al.: Fan-planarity: properties and complexity. Theor. Comput. Sci. 589, 76–86 (2015). https://doi.org/10.1016/J.TCS.2015.04.020,

  14. Brand, C., Ganian, R., Röder, S., Schager, F.: Fixed-parameter algorithms for computing RAC drawings of graphs. In: Bekos, M.A., Chimani, M. (eds.) GD 2023. LNCS, vol. 14466, pp. 66–81. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-49275-4_5

    Chapter  Google Scholar 

  15. Chaplick, S., Förster, H., Kryven, M., Wolff, A.: Drawing graphs with circular arcs and right-angle crossings. In: Albers, S. (ed.) 17th Scandinavian Symposium and Workshops on Algorithm Theory. SWAT 2020. LIPIcs, vol. 162, pp. 21:1–21:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPICS.SWAT.2020.21,

  16. Chaplick, S., Lipp, F., Wolff, A., Zink, J.: Compact drawings of 1-planar graphs with right-angle crossings and few bends. Comput. Geom. 84, 50–68 (2019). https://doi.org/10.1016/J.COMGEO.2019.07.006

    Article  MathSciNet  MATH  Google Scholar 

  17. Dehkordi, H.R., Eades, P.: Every outer-1-plane graph has a right angle crossing drawing. Int. J. Comput. Geom. Appl. 22(6), 543–558 (2012). https://doi.org/10.1142/S021819591250015X

    Article  MathSciNet  MATH  Google Scholar 

  18. Dehkordi, H.R., Eades, P., Hong, S., Nguyen, Q.H.: Circular right-angle crossing drawings in linear time. Theor. Comput. Sci. 639, 26–41 (2016). https://doi.org/10.1016/J.TCS.2016.05.017

    Article  MathSciNet  MATH  Google Scholar 

  19. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996). https://doi.org/10.1007/BF01961541

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996). https://doi.org/10.1137/S0097539794280736

    Article  MathSciNet  MATH  Google Scholar 

  21. Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing drawings. Algorithmica 68(4), 954–997 (2014). https://doi.org/10.1007/S00453-012-9706-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Didimo, W.: Density of straight-line 1-planar graph drawings. Inf. Process. Lett. 113(7), 236–240 (2013). https://doi.org/10.1016/J.IPL.2013.01.013

    Article  MathSciNet  MATH  Google Scholar 

  23. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/J.TCS.2011.05.025

    Article  MathSciNet  MATH  Google Scholar 

  24. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/3301281

  25. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, 5th edn, vol. 173. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-662-53622-3

  26. Eppstein, D.: Parallel recognition of series-parallel graphs. Inf. Comput. 98(1), 41–55 (1992). https://doi.org/10.1016/0890-5401(92)90041-D

    Article  MathSciNet  MATH  Google Scholar 

  27. Förster, H., Ganian, R., Klute, F., Nöllenburg, M.: On strict (outer-)confluent graphs. J. Graph Algorithms Appl. 25(1), 481–512 (2021). https://doi.org/10.7155/JGAA.00568

    Article  MathSciNet  MATH  Google Scholar 

  28. Förster, H., Katheder, J., Ortali, G.: Outer-(ap)RAC graphs. CoRR abs/2411.17565 (2024). https://doi.org/10.48550/ARXIV.2411.17565,

  29. Förster, H., Kaufmann, M.: On compact RAC drawings. In: Grandoni, F., Herman, G., Sanders, P. (eds.) 28th Annual European Symposium on Algorithms. ESA 2020. LIPIcs, vol. 173, pp. 53:1–53:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPICS.ESA.2020.53

  30. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002, https://www.sciencedirect.com/science/article/pii/S0370157309002841

  31. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799, https://www.pnas.org/doi/abs/10.1073/pnas.122653799

  32. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44541-2_8

    Chapter  MATH  Google Scholar 

  33. Henry, N., Fekete, J., McGuffin, M.J.: Nodetrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007). https://doi.org/10.1109/TVCG.2007.70582

    Article  MATH  Google Scholar 

  34. Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015). https://doi.org/10.1007/S00453-014-9890-8

    Article  MathSciNet  MATH  Google Scholar 

  35. Hong, S.-H., Nagamochi, H.: Testing full outer-2-planarity in linear time. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 406–421. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_29

    Chapter  MATH  Google Scholar 

  36. Hong, S., Tokuyama, T. (eds.): Beyond Planar Graphs, Communications of NII Shonan Meetings. Springer, Cham (2020). https://doi.org/10.1007/978-981-15-6533-5,

  37. Huang, W.: Using eye tracking to investigate graph layout effects. In: Hong, S., Ma, K. (eds.) APVIS 2007, 6th International Asia-Pacific Symposium on Visualization 2007, pp. 97–100. IEEE Computer Society (2007). https://doi.org/10.1109/APVIS.2007.329282,

  38. Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014). https://doi.org/10.1016/J.JVLC.2014.03.001

    Article  MATH  Google Scholar 

  39. Huang, W., Hong, S., Eades, P.: Effects of crossing angles. In: IEEE VGTC Pacific Visualization Symposium 2008. PacificVis 2008. pp. 41–46. IEEE Computer Society (2008). https://doi.org/10.1109/PACIFICVIS.2008.4475457,

  40. Kaufmann, M., Klemz, B., Knorr, K., Reddy, M.M., Schröder, F., Ueckerdt, T.: The density formula: one lemma to bound them all. CoRR abs/2311.06193 (2023). https://doi.org/10.48550/ARXIV.2311.06193,

  41. Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interact. Comput. 13(2), 147–162 (2000). https://doi.org/10.1016/S0953-5438(00)00032-1

    Article  MATH  Google Scholar 

  42. Rahmati, Z., Emami, F.: RAC drawings in subcubic area. Inf. Process. Lett. 159–160, 105945 (2020). https://doi.org/10.1016/J.IPL.2020.105945

    Article  MathSciNet  MATH  Google Scholar 

  43. Schaefer, M.: RAC-drawability is \(\exists \)\(\mathbb{R} \)-complete and related results. J. Graph Algorithms Appl. 27(9), 803–841 (2023). https://doi.org/10.7155/JGAA.00646

    Article  MathSciNet  MATH  Google Scholar 

  44. Tamassia, R. (ed.): Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC, Boca Raton (2013). https://www.crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125

  45. Tóth, C.D.: On RAC drawings of graphs with two bends per edge. In: Bekos, M.A., Chimani, M. (eds.) GD 2023. LNCS, vol. 14465, pp. 69–77. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-49272-3_5

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Förster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Förster, H., Katheder, J., Ortali, G. (2025). Outer-(ap)RAC Graphs. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82670-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82669-6

  • Online ISBN: 978-3-031-82670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics