Abstract
An outer-RAC drawing of a graph is a straight-line drawing where all vertices are incident to the outer cell and all edge crossings occur at a right angle. If additionally, all crossing edges are either horizontal or vertical, we call the drawing outer-apRAC (ap for axis-parallel). A graph is outer-(ap)RAC if it admits an outer-(ap)RAC drawing. We investigate the class of outer-(ap)RAC graphs. We show that the outer-RAC graphs are a proper subset of the planar graphs with at most \(2.5n-4\) edges where n is the number of vertices. This density bound is tight, even for outer-apRAC graphs. Moreover, we provide an SPQR-tree based linear-time algorithm which computes an outer-RAC drawing for every given series-parallel graph of maximum degree four. As a complementing result, we present planar graphs of maximum degree four and series-parallel graphs of maximum degree five that are not outer-RAC. Finally, for series-parallel graphs of maximum degree three we show how to compute an outer-apRAC drawing in linear time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
- 2.
In the literature there exists another recursive definition for series-parallel graphs [26]. However, one can obtain biconnectivity by a parallel composition with a single edge.
- 3.
When considering the edges incident to \(v_i\) in clockwise order starting from the direction in which we reach \(v_i\) along O(B) coming from \(v_{i-1}\).
References
Angelini, P., Bekos, M.A., Förster, H., Kaufmann, M.: On RAC drawings of graphs with one bend per edge. Theor. Comput. Sci. 828–829, 42–54 (2020). https://doi.org/10.1016/J.TCS.2020.04.018
Angelini, P., Bekos, M.A., Katheder, J., Kaufmann, M., Pfister, M.: RAC drawings of graphs with low degree. In: Szeider, S., Ganian, R., Silva, A. (eds.) 47th Int. Symposium on Mathematical Foundations of Computer Science. MFCS 2022. LIPIcs, vol. 241, pp. 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.MFCS.2022.11,
Angelini, P., Bekos, M.A., Katheder, J., Kaufmann, M., Pfister, M., Ueckerdt, T.: Axis-parallel right angle crossing graphs. In: Gørtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms. ESA 2023. LIPIcs, vol. 274, pp. 9:1–9:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.ESA.2023.9,
Angori, L., Didimo, W., Montecchiani, F., Pagliuca, D., Tappini, A.: Hybrid graph visualizations with chordlink: algorithms, experiments, and applications. IEEE Trans. Vis. Comput. Graph. 28(2), 1288–1300 (2022). https://doi.org/10.1109/TVCG.2020.3016055
Argyriou, E.N., Bekos, M.A., Kaufmann, M., Symvonis, A.: Geometric RAC simultaneous drawings of graphs. J. Graph Algorithms Appl. 17(1), 11–34 (2013). https://doi.org/10.7155/JGAA.00282
Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012). https://doi.org/10.7155/JGAA.00274
Arikushi, K., Fulek, R., Keszegh, B., Moric, F., Tóth, C.D.: Graphs that admit right angle crossing drawings. Comput. Geom. 45(4), 169–177 (2012). https://doi.org/10.1016/J.COMGEO.2011.11.008
Auer, C., et al.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016). https://doi.org/10.1007/S00453-015-0002-1
Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79(2), 401–427 (2017). https://doi.org/10.1007/S00453-016-0200-5
Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48–57 (2017). https://doi.org/10.1016/J.TCS.2017.05.039
Bekos, M.A., van Dijk, T.C., Kindermann, P., Wolff, A.: Simultaneous drawing of planar graphs with right-angle crossings and few bends. J. Graph Algorithms Appl. 20(1), 133–158 (2016). https://doi.org/10.7155/JGAA.00388
Biedl, T.: Drawing outer-1-planar graphs revisited. J. Graph Algorithms Appl. 26(1), 59–73 (2022). https://doi.org/10.7155/JGAA.00581
Binucci, C., et al.: Fan-planarity: properties and complexity. Theor. Comput. Sci. 589, 76–86 (2015). https://doi.org/10.1016/J.TCS.2015.04.020,
Brand, C., Ganian, R., Röder, S., Schager, F.: Fixed-parameter algorithms for computing RAC drawings of graphs. In: Bekos, M.A., Chimani, M. (eds.) GD 2023. LNCS, vol. 14466, pp. 66–81. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-49275-4_5
Chaplick, S., Förster, H., Kryven, M., Wolff, A.: Drawing graphs with circular arcs and right-angle crossings. In: Albers, S. (ed.) 17th Scandinavian Symposium and Workshops on Algorithm Theory. SWAT 2020. LIPIcs, vol. 162, pp. 21:1–21:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPICS.SWAT.2020.21,
Chaplick, S., Lipp, F., Wolff, A., Zink, J.: Compact drawings of 1-planar graphs with right-angle crossings and few bends. Comput. Geom. 84, 50–68 (2019). https://doi.org/10.1016/J.COMGEO.2019.07.006
Dehkordi, H.R., Eades, P.: Every outer-1-plane graph has a right angle crossing drawing. Int. J. Comput. Geom. Appl. 22(6), 543–558 (2012). https://doi.org/10.1142/S021819591250015X
Dehkordi, H.R., Eades, P., Hong, S., Nguyen, Q.H.: Circular right-angle crossing drawings in linear time. Theor. Comput. Sci. 639, 26–41 (2016). https://doi.org/10.1016/J.TCS.2016.05.017
Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996). https://doi.org/10.1007/BF01961541
Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996). https://doi.org/10.1137/S0097539794280736
Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing drawings. Algorithmica 68(4), 954–997 (2014). https://doi.org/10.1007/S00453-012-9706-7
Didimo, W.: Density of straight-line 1-planar graph drawings. Inf. Process. Lett. 113(7), 236–240 (2013). https://doi.org/10.1016/J.IPL.2013.01.013
Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/J.TCS.2011.05.025
Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/3301281
Diestel, R.: Graph Theory. Graduate Texts in Mathematics, 5th edn, vol. 173. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-662-53622-3
Eppstein, D.: Parallel recognition of series-parallel graphs. Inf. Comput. 98(1), 41–55 (1992). https://doi.org/10.1016/0890-5401(92)90041-D
Förster, H., Ganian, R., Klute, F., Nöllenburg, M.: On strict (outer-)confluent graphs. J. Graph Algorithms Appl. 25(1), 481–512 (2021). https://doi.org/10.7155/JGAA.00568
Förster, H., Katheder, J., Ortali, G.: Outer-(ap)RAC graphs. CoRR abs/2411.17565 (2024). https://doi.org/10.48550/ARXIV.2411.17565,
Förster, H., Kaufmann, M.: On compact RAC drawings. In: Grandoni, F., Herman, G., Sanders, P. (eds.) 28th Annual European Symposium on Algorithms. ESA 2020. LIPIcs, vol. 173, pp. 53:1–53:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPICS.ESA.2020.53
Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002, https://www.sciencedirect.com/science/article/pii/S0370157309002841
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799, https://www.pnas.org/doi/abs/10.1073/pnas.122653799
Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44541-2_8
Henry, N., Fekete, J., McGuffin, M.J.: Nodetrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007). https://doi.org/10.1109/TVCG.2007.70582
Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015). https://doi.org/10.1007/S00453-014-9890-8
Hong, S.-H., Nagamochi, H.: Testing full outer-2-planarity in linear time. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 406–421. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_29
Hong, S., Tokuyama, T. (eds.): Beyond Planar Graphs, Communications of NII Shonan Meetings. Springer, Cham (2020). https://doi.org/10.1007/978-981-15-6533-5,
Huang, W.: Using eye tracking to investigate graph layout effects. In: Hong, S., Ma, K. (eds.) APVIS 2007, 6th International Asia-Pacific Symposium on Visualization 2007, pp. 97–100. IEEE Computer Society (2007). https://doi.org/10.1109/APVIS.2007.329282,
Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014). https://doi.org/10.1016/J.JVLC.2014.03.001
Huang, W., Hong, S., Eades, P.: Effects of crossing angles. In: IEEE VGTC Pacific Visualization Symposium 2008. PacificVis 2008. pp. 41–46. IEEE Computer Society (2008). https://doi.org/10.1109/PACIFICVIS.2008.4475457,
Kaufmann, M., Klemz, B., Knorr, K., Reddy, M.M., Schröder, F., Ueckerdt, T.: The density formula: one lemma to bound them all. CoRR abs/2311.06193 (2023). https://doi.org/10.48550/ARXIV.2311.06193,
Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interact. Comput. 13(2), 147–162 (2000). https://doi.org/10.1016/S0953-5438(00)00032-1
Rahmati, Z., Emami, F.: RAC drawings in subcubic area. Inf. Process. Lett. 159–160, 105945 (2020). https://doi.org/10.1016/J.IPL.2020.105945
Schaefer, M.: RAC-drawability is \(\exists \)\(\mathbb{R} \)-complete and related results. J. Graph Algorithms Appl. 27(9), 803–841 (2023). https://doi.org/10.7155/JGAA.00646
Tamassia, R. (ed.): Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC, Boca Raton (2013). https://www.crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
Tóth, C.D.: On RAC drawings of graphs with two bends per edge. In: Bekos, M.A., Chimani, M. (eds.) GD 2023. LNCS, vol. 14465, pp. 69–77. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-49272-3_5
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Förster, H., Katheder, J., Ortali, G. (2025). Outer-(ap)RAC Graphs. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-82670-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82669-6
Online ISBN: 978-3-031-82670-2
eBook Packages: Computer ScienceComputer Science (R0)