Skip to main content

Multi-agent Search-Type Problems on Polygons

(Extended Abstract)

  • Conference paper
  • First Online:
SOFSEM 2025: Theory and Practice of Computer Science (SOFSEM 2025)

Abstract

We present several advancements in search-type problems for fleets of mobile agents operating in two dimensions under the wireless model. Potential hidden target locations are equidistant from a central point, forming either a unit-radius disk (infinite possible locations) or regular polygons (finite possible locations) inscribed in a unit-radius disk. Building and extending on the foundational disk evacuation problem [23], the disk priority evacuation problem with k Servants [21, 27], and the disk w-weighted search problem [49], we make improvements on several fronts. First, we establish new upper and lower bounds for the n-gon priority evacuation problem with 1 Servant for \(n \le 13\), and for \(n_k\)-gons with \(k=2, 3, 4\) Servants, where \(n_2 \le 11\), \(n_3 \le 9\), and \(n_4 \le 10\), offering tight or nearly tight bounds. The only previous results known were a tight upper bound for \(k=1\) and \(n=6\) in [27] and lower bounds for \(k=1\) and \(n \le 9\) in [49]. Second, our work improves the best lower bound known for the disk priority evacuation problem with \(k=1\) Servant from 4.46798 to 4.64666 and for \(k=2\) Servants from 3.6307 of [27] to 3.65332. Third, we improve the best lower bounds known for the disk w-weighted group search problem, significantly reducing the gap between the best upper and lower bounds for w values where the gap was largest. These improvements are based on nearly tight upper and lower bounds for the 11-gon and 12-gon w-weighted evacuation problems, while the previous study of [49] was limited only to lower bounds and only to 7-gons.

Research supported in part by NSERC Discovery grant.

A full version of the paper is available on arXiv [43].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The possible target placements on a disk are uncountable many, whereas for every n, the vertices of an n-gon are finite many. However, for every \(\epsilon >0\), there is large enough n so that every target placement on the disk is no more than \(\epsilon \) away from a target placement on the n-gon.

  2. 2.

    Our positive and negative results provide only the first 5 digits of our computations, even though our numerical evaluations extend to at least 10 digits of accuracy. Often, we also have closed-form expressions, involving algebraic and trigonometric operations, that describe these numbers. However, for larger values of n, these expressions become too extensive to be informative, and hence we omit them.

  3. 3.

    The lower bounds were computed for values of w from 0 to 1 with step size 0.01.

  4. 4.

    The lower bounds were computed for values of w from 0 to 1 with step size 0.01. The upper bounds were computed for values of w from 0 to 1 with step size 0.02, hence we only depict them as points.

  5. 5.

    For our lower bound arguments, we only need that the the optimal value to \(\textsc {NLP}^n_k(s,\rho )\) is a lower bound to the cost of the optimal \((s,\rho )\)-algorithm.

References

  1. Ahlswede, R., Wegener, I.: Search Problems. Wiley, Hoboken (1987)

    Google Scholar 

  2. Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., Subrahmanian, V.S.: Search Theory: A Game Theoretic Perspective. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6825-7

    Book  MATH  Google Scholar 

  3. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, London (2003)

    Google Scholar 

  4. Angelopoulos, S., Dürr, C., Jin, S.: Best-of-two-worlds analysis of online search. In: Niedermeier, R., Paul, C. (eds.) 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, 13–16 March 2019, Berlin, Germany, LIPIcs, vol. 126, pp. 7:1–7:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  5. Angelopoulos, S., Dürr, C., Lidbetter, T.: The expanding search ratio of a graph. Discret. Appl. Math. 260, 51–65 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yates, R.B., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Google Scholar 

  7. Bagheri, I., Narayanan, L., Opatrny, J.: Evacuation of equilateral triangles by mobile agents of limited communication range. In: Dressler, F., Scheideler, C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34405-4_1

    Chapter  MATH  Google Scholar 

  8. Bampas, E., et al.: Linear search by a pair of distinct-speed robots. Algorithmica 81(1), 317–342 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Behrouz, P., Konstantinidis, O., Leonardos, N., Pagourtzis, A., Papaioannou, I., Spyrakou, M.: Byzantine fault-tolerant protocols for (n, f)-evacuation from a circle. In: Georgiou, K., Kranakis, E. (eds.) ALGOWIN 2023. LNCS, vol. 14061, pp. 87–100. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48882-5_7

    Chapter  MATH  Google Scholar 

  11. Bonato, A., Georgiou, K., MacRury, C., Prałat, P.: Algorithms for p-faulty search on a half-line. Algorithmica, 1–30 (2022)

    Google Scholar 

  12. Borowiecki, P., Das, S., Dereniowski, D., Kuszner, Ł: Distributed evacuation in graphs with multiple exits. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 228–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_15

    Chapter  MATH  Google Scholar 

  13. Bose, P., De Carufel, J.-L.: A general framework for searching on a line. Theor. Comput. Sci. 703, 1–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brandt, S., Foerster, K.-T., Richner, B., Wattenhofer, R.: Wireless evacuation on m rays with k searchers. Theor. Comput. Sci. 811, 56–69 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_10

    Chapter  MATH  Google Scholar 

  16. Chrobak, M., Gasieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14

    Chapter  MATH  Google Scholar 

  17. Chuangpishit, H., Georgiou, K., Sharma, P.: A multi-objective optimization problem on evacuating 2 robots from the disk in the face-to-face model; trade-offs between worst-case and average-case analysis. Information 11(11), 506 (2020)

    Article  MATH  Google Scholar 

  18. Chuangpishit, H., Mehrabi, S., Narayanan, L., Opatrny, J.: Evacuating equilateral triangles and squares in the face-to-face model. Comput. Geom. 89, 101624 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. COIN-OR. Clp: Coin-or linear programming solver. https://github.com/coin-or/Clp. Accessed 04 June 2024

  20. COIN-OR. Ipopt: Interior point optimizer. https://github.com/coin-or/Ipopt. Accessed 19 June 2024

  21. Czyzowicz, J., et al.: Priority evacuation from a disk: the case of \(n\ge 4\). Theor. Comput. Sci. 846, 91–102 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. In: ICDCN, pp. 28:1–28:8. ACM (2016)

    Google Scholar 

  23. Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9

    Chapter  MATH  Google Scholar 

  24. Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0_10

    Chapter  MATH  Google Scholar 

  25. Czyzowicz, J., et al.: Energy consumption of group search on a line. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), Leibniz International Proceedings in Informatics (LIPIcs), vol.132, pp. 137:1–137:15, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.137

  26. Czyzowicz, J., et al.: Time-energy tradeoffs for evacuation by two robots in the wireless model. Theor. Comput. Sci. 852, 61–72 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Czyzowicz, J., et al.: Priority evacuation from a disk: the case of n= 1, 2, 3. Theor. Comput. Sci. 806, 595–616 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Czyzowicz, J., et al.: Search on a line by byzantine robots. Int. J. Found. Comput. Sci. 32(04), 369–387 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication. Discret. Math. Theor. Comput. Sci. 22(4) (2020). https://dmtcs.episciences.org/6732

  30. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 335–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_14

    Chapter  MATH  Google Scholar 

  31. Czyzowicz, J., et al.: Group evacuation on a line by agents with different communication abilities. In: ISAAC 2021, pp. 57:1–57:24 (2021)

    Google Scholar 

  32. Czyzowicz, J., Killick, R., Kranakis, E., Stachowiak, G.: Search and evacuation with a near majority of faulty agents. In: SIAM Conference on Applied and Computational Discrete Algorithms (ACDA21), pp. 217–227. SIAM (2021)

    Google Scholar 

  33. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. Distrib. Comput. 32(6), 493–504 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_13

    Chapter  MATH  Google Scholar 

  35. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Linear search with terrain-dependent speeds. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 430–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_36

    Chapter  MATH  Google Scholar 

  36. Disser, Y., Schmitt, S.: Evacuating two robots from a disk: a second cut. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 200–214. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24922-9_14

    Chapter  MATH  Google Scholar 

  37. Dunning, I., Huchette, J., Lubin, M.: Jump: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Feinerman, O., Korman, A.: The ants problem. Distrib. Comput. 30(3), 149–168 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fekete, S., Gray, C., Kröller, A.: Evacuation of rectilinear polygons. In: Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17458-2_3

    Chapter  MATH  Google Scholar 

  40. Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing. LNCS, vol. 11340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7

  41. Georgiou, K., Giachoudis, N., Kranakis, E.: Evacuation from a disk for robots with asymmetric communication. In: 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  42. Georgiou, K., Jang, W.: Triangle evacuation of 2 agents in the wireless model. In: Erlebach, T., Segal, M. (eds.) ALGOSENSORS 2022. LNCS, vol. 13707, pp. 77–90. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22050-0_6

    Chapter  MATH  Google Scholar 

  43. Georgiou, K., Jones, C., Lucier, J.: Multi-agent search-type problems on polygons. arXiv preprint arXiv:2406.19495 (2024)

  44. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a disk: Wireless and face-to-face communication models. Discret. Math. Theor. Comput. Sci. 21 (2019)

    Google Scholar 

  45. Georgiou, K., Karakostas, G., Kranakis, E.: Treasure evacuation with one robot on a disk. Theor. Comput. Sci. 852, 18–28 (2021). https://doi.org/10.1016/j.tcs.2020.11.008, https://www.sciencedirect.com/science/article/pii/S030439752030640X,

  46. Georgiou, K., Kranakis, E., Leonardos, N., Pagourtzis, A., Papaioannou, I.: Optimal circle search despite the presence of faulty robots. In: Dressler, F., Scheideler, C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp. 192–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34405-4_11

    Chapter  MATH  Google Scholar 

  47. Georgiou, K., Leizerovich, S., Lucier, J., Kundu, S.: Evacuating from \(\ell _p\) unit disks in the wireless model. Theor. Comput. Sci. 944, 113675 (2023). https://doi.org/10.1016/j.tcs.2022.12.025

  48. Georgiou, K., Lucier, J.: Weighted group search on a line & implications to the priority evacuation problem. Theor. Comput. Sci. 939, 1–17 (2023). https://doi.org/10.1016/j.tcs.2022.10.013

  49. Georgiou, K., Wang, X.: Weighted group search on the disk & improved lower bounds for priority evacuation. In: Rescigno, A.A., Vaccaro, U. (eds.) IWOCA 2024. LNCS, vol. 14764, pp. 28–42. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-63021-7_3

    Chapter  MATH  Google Scholar 

  50. Hohzaki, R.: Search games: literature and survey. J. Oper. Res. Soc. Jpn. 59(1), 1–34 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Kleinberg, J.M.: On-line search in a simple polygon. In: SODA, vol. 94, pp. 8–15. Citeseer (1994)

    Google Scholar 

  52. Miller, A., Pelc, A.: Tradeoffs between cost and information for rendezvous and treasure hunt. J. Parallel Distrib. Comput. 83, 159–167 (2015)

    Article  MATH  Google Scholar 

  53. Pattanayak, D., Ramesh, H., Mandal, P.S., Schmid, S.: Evacuating two robots from two unknown exits on the perimeter of a disk with wireless communication. In: Proceedings of the 19th International Conference on Distributed Computing and Networking, pp. 1–4 (2018)

    Google Scholar 

  54. Sun, X., Sun, Y., Zhang, J.: Better upper bounds for searching on a line with byzantine robots. In: Du, D.-Z., Wang, J. (eds.) Complexity and Approximation. LNCS, vol. 12000, pp. 151–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41672-0_9

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Georgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Georgiou, K., Jones, C., Lucier, J. (2025). Multi-agent Search-Type Problems on Polygons. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82670-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82669-6

  • Online ISBN: 978-3-031-82670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics