Abstract
We present several advancements in search-type problems for fleets of mobile agents operating in two dimensions under the wireless model. Potential hidden target locations are equidistant from a central point, forming either a unit-radius disk (infinite possible locations) or regular polygons (finite possible locations) inscribed in a unit-radius disk. Building and extending on the foundational disk evacuation problem [23], the disk priority evacuation problem with k Servants [21, 27], and the disk w-weighted search problem [49], we make improvements on several fronts. First, we establish new upper and lower bounds for the n-gon priority evacuation problem with 1 Servant for \(n \le 13\), and for \(n_k\)-gons with \(k=2, 3, 4\) Servants, where \(n_2 \le 11\), \(n_3 \le 9\), and \(n_4 \le 10\), offering tight or nearly tight bounds. The only previous results known were a tight upper bound for \(k=1\) and \(n=6\) in [27] and lower bounds for \(k=1\) and \(n \le 9\) in [49]. Second, our work improves the best lower bound known for the disk priority evacuation problem with \(k=1\) Servant from 4.46798 to 4.64666 and for \(k=2\) Servants from 3.6307 of [27] to 3.65332. Third, we improve the best lower bounds known for the disk w-weighted group search problem, significantly reducing the gap between the best upper and lower bounds for w values where the gap was largest. These improvements are based on nearly tight upper and lower bounds for the 11-gon and 12-gon w-weighted evacuation problems, while the previous study of [49] was limited only to lower bounds and only to 7-gons.
Research supported in part by NSERC Discovery grant.
A full version of the paper is available on arXiv [43].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The possible target placements on a disk are uncountable many, whereas for every n, the vertices of an n-gon are finite many. However, for every \(\epsilon >0\), there is large enough n so that every target placement on the disk is no more than \(\epsilon \) away from a target placement on the n-gon.
- 2.
Our positive and negative results provide only the first 5 digits of our computations, even though our numerical evaluations extend to at least 10 digits of accuracy. Often, we also have closed-form expressions, involving algebraic and trigonometric operations, that describe these numbers. However, for larger values of n, these expressions become too extensive to be informative, and hence we omit them.
- 3.
The lower bounds were computed for values of w from 0 to 1 with step size 0.01.
- 4.
The lower bounds were computed for values of w from 0 to 1 with step size 0.01. The upper bounds were computed for values of w from 0 to 1 with step size 0.02, hence we only depict them as points.
- 5.
For our lower bound arguments, we only need that the the optimal value to \(\textsc {NLP}^n_k(s,\rho )\) is a lower bound to the cost of the optimal \((s,\rho )\)-algorithm.
References
Ahlswede, R., Wegener, I.: Search Problems. Wiley, Hoboken (1987)
Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., Subrahmanian, V.S.: Search Theory: A Game Theoretic Perspective. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6825-7
Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, London (2003)
Angelopoulos, S., Dürr, C., Jin, S.: Best-of-two-worlds analysis of online search. In: Niedermeier, R., Paul, C. (eds.) 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, 13–16 March 2019, Berlin, Germany, LIPIcs, vol. 126, pp. 7:1–7:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)
Angelopoulos, S., Dürr, C., Lidbetter, T.: The expanding search ratio of a graph. Discret. Appl. Math. 260, 51–65 (2019)
Yates, R.B., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)
Bagheri, I., Narayanan, L., Opatrny, J.: Evacuation of equilateral triangles by mobile agents of limited communication range. In: Dressler, F., Scheideler, C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34405-4_1
Bampas, E., et al.: Linear search by a pair of distinct-speed robots. Algorithmica 81(1), 317–342 (2019)
Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)
Behrouz, P., Konstantinidis, O., Leonardos, N., Pagourtzis, A., Papaioannou, I., Spyrakou, M.: Byzantine fault-tolerant protocols for (n, f)-evacuation from a circle. In: Georgiou, K., Kranakis, E. (eds.) ALGOWIN 2023. LNCS, vol. 14061, pp. 87–100. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48882-5_7
Bonato, A., Georgiou, K., MacRury, C., Prałat, P.: Algorithms for p-faulty search on a half-line. Algorithmica, 1–30 (2022)
Borowiecki, P., Das, S., Dereniowski, D., Kuszner, Ł: Distributed evacuation in graphs with multiple exits. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 228–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_15
Bose, P., De Carufel, J.-L.: A general framework for searching on a line. Theor. Comput. Sci. 703, 1–17 (2017)
Brandt, S., Foerster, K.-T., Richner, B., Wattenhofer, R.: Wireless evacuation on m rays with k searchers. Theor. Comput. Sci. 811, 56–69 (2020)
Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_10
Chrobak, M., Gasieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14
Chuangpishit, H., Georgiou, K., Sharma, P.: A multi-objective optimization problem on evacuating 2 robots from the disk in the face-to-face model; trade-offs between worst-case and average-case analysis. Information 11(11), 506 (2020)
Chuangpishit, H., Mehrabi, S., Narayanan, L., Opatrny, J.: Evacuating equilateral triangles and squares in the face-to-face model. Comput. Geom. 89, 101624 (2020)
COIN-OR. Clp: Coin-or linear programming solver. https://github.com/coin-or/Clp. Accessed 04 June 2024
COIN-OR. Ipopt: Interior point optimizer. https://github.com/coin-or/Ipopt. Accessed 19 June 2024
Czyzowicz, J., et al.: Priority evacuation from a disk: the case of \(n\ge 4\). Theor. Comput. Sci. 846, 91–102 (2020)
Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. In: ICDCN, pp. 28:1–28:8. ACM (2016)
Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9
Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0_10
Czyzowicz, J., et al.: Energy consumption of group search on a line. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), Leibniz International Proceedings in Informatics (LIPIcs), vol.132, pp. 137:1–137:15, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.137
Czyzowicz, J., et al.: Time-energy tradeoffs for evacuation by two robots in the wireless model. Theor. Comput. Sci. 852, 61–72 (2021)
Czyzowicz, J., et al.: Priority evacuation from a disk: the case of n= 1, 2, 3. Theor. Comput. Sci. 806, 595–616 (2020)
Czyzowicz, J., et al.: Search on a line by byzantine robots. Int. J. Found. Comput. Sci. 32(04), 369–387 (2021)
Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication. Discret. Math. Theor. Comput. Sci. 22(4) (2020). https://dmtcs.episciences.org/6732
Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 335–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_14
Czyzowicz, J., et al.: Group evacuation on a line by agents with different communication abilities. In: ISAAC 2021, pp. 57:1–57:24 (2021)
Czyzowicz, J., Killick, R., Kranakis, E., Stachowiak, G.: Search and evacuation with a near majority of faulty agents. In: SIAM Conference on Applied and Computational Discrete Algorithms (ACDA21), pp. 217–227. SIAM (2021)
Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. Distrib. Comput. 32(6), 493–504 (2019)
Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_13
Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Linear search with terrain-dependent speeds. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 430–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_36
Disser, Y., Schmitt, S.: Evacuating two robots from a disk: a second cut. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 200–214. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24922-9_14
Dunning, I., Huchette, J., Lubin, M.: Jump: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)
Feinerman, O., Korman, A.: The ants problem. Distrib. Comput. 30(3), 149–168 (2017)
Fekete, S., Gray, C., Kröller, A.: Evacuation of rectilinear polygons. In: Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17458-2_3
Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing. LNCS, vol. 11340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7
Georgiou, K., Giachoudis, N., Kranakis, E.: Evacuation from a disk for robots with asymmetric communication. In: 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)
Georgiou, K., Jang, W.: Triangle evacuation of 2 agents in the wireless model. In: Erlebach, T., Segal, M. (eds.) ALGOSENSORS 2022. LNCS, vol. 13707, pp. 77–90. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22050-0_6
Georgiou, K., Jones, C., Lucier, J.: Multi-agent search-type problems on polygons. arXiv preprint arXiv:2406.19495 (2024)
Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a disk: Wireless and face-to-face communication models. Discret. Math. Theor. Comput. Sci. 21 (2019)
Georgiou, K., Karakostas, G., Kranakis, E.: Treasure evacuation with one robot on a disk. Theor. Comput. Sci. 852, 18–28 (2021). https://doi.org/10.1016/j.tcs.2020.11.008, https://www.sciencedirect.com/science/article/pii/S030439752030640X,
Georgiou, K., Kranakis, E., Leonardos, N., Pagourtzis, A., Papaioannou, I.: Optimal circle search despite the presence of faulty robots. In: Dressler, F., Scheideler, C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp. 192–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34405-4_11
Georgiou, K., Leizerovich, S., Lucier, J., Kundu, S.: Evacuating from \(\ell _p\) unit disks in the wireless model. Theor. Comput. Sci. 944, 113675 (2023). https://doi.org/10.1016/j.tcs.2022.12.025
Georgiou, K., Lucier, J.: Weighted group search on a line & implications to the priority evacuation problem. Theor. Comput. Sci. 939, 1–17 (2023). https://doi.org/10.1016/j.tcs.2022.10.013
Georgiou, K., Wang, X.: Weighted group search on the disk & improved lower bounds for priority evacuation. In: Rescigno, A.A., Vaccaro, U. (eds.) IWOCA 2024. LNCS, vol. 14764, pp. 28–42. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-63021-7_3
Hohzaki, R.: Search games: literature and survey. J. Oper. Res. Soc. Jpn. 59(1), 1–34 (2016)
Kleinberg, J.M.: On-line search in a simple polygon. In: SODA, vol. 94, pp. 8–15. Citeseer (1994)
Miller, A., Pelc, A.: Tradeoffs between cost and information for rendezvous and treasure hunt. J. Parallel Distrib. Comput. 83, 159–167 (2015)
Pattanayak, D., Ramesh, H., Mandal, P.S., Schmid, S.: Evacuating two robots from two unknown exits on the perimeter of a disk with wireless communication. In: Proceedings of the 19th International Conference on Distributed Computing and Networking, pp. 1–4 (2018)
Sun, X., Sun, Y., Zhang, J.: Better upper bounds for searching on a line with byzantine robots. In: Du, D.-Z., Wang, J. (eds.) Complexity and Approximation. LNCS, vol. 12000, pp. 151–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41672-0_9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Georgiou, K., Jones, C., Lucier, J. (2025). Multi-agent Search-Type Problems on Polygons. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-82670-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82669-6
Online ISBN: 978-3-031-82670-2
eBook Packages: Computer ScienceComputer Science (R0)