Abstract
We present an algorithm for the efficient generation of all pairwise non-isomorphic cycle permutation graphs, i.e. cubic graphs with a 2-factor consisting of two chordless cycles, and non-hamiltonian cycle permutation graphs, from which the permutation snarks can easily be computed. This allows us to generate all cycle permutation graphs up to order 34 and all permutation snarks up to order 46, improving upon previous computational results by Brinkmann et al. Moreover, we give several improved lower bounds for interesting permutation snarks, such as for a smallest permutation snark of order \(6\bmod 8\) or a smallest permutation snark of girth at least 6. These computational results also allow us to complete a characterisation of the orders for which non-hamiltonian cycle permutation graphs exist, answering an open question by Klee from 1972, and yield many more counterexamples to a conjecture by Zhang.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Brinkmann, G., Goedgebeur, J., Hägglund, J., Markström, K.: Generation and properties of snarks. J. Comb. Theory Ser. B 103(4), 468–488 (2013). https://doi.org/10.1016/j.jctb.2013.05.001
Brinkmann, G., Goedgebeur, J., Mckay, B.D.: The minimality of the Georges-Kelmans graph. Math. Comput. 91(335), 1483–1500 (2022). https://doi.org/10.1090/mcom/3701
Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poincare 3(4), 433–438 (1967)
Coolsaet, K., D’hondt, S., Goedgebeur, J.: House of graphs 2.0: a database of interesting graphs and more. Discret. Appl. Math. 325, 97–107 (2023). https://doi.org/10.1016/j.dam.2022.10.013
Faradzev, I.A.: Algorithmic Studies in Combinatorics, chap. Generation of nonisomorphic graphs with a given degree sequence, pp. 11–19. Nauka (1978). (Russian)
Goedgebeur, J., Renders, J.: Cycle Permutation Graphs, (Version 1) [Computer software] (2024). https://github.com/JarneRenders/Cycle-Permutation-Graphs
Goedgebeur, J., Renders, J.: Generation of cycle permutation graphs and permutation snarks (2024). https://arxiv.org/abs/2411.12606
Klee, V.: Which generalized prisms admit H-circuits? In: Alavi, Y., Lick, D.R., White, A.T. (eds.) Graph Theory and Applications, pp. 173–178. Springer, Heidelberg (1972). https://doi.org/10.1007/BFb0067368
McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306–324 (1998). https://doi.org/10.1006/jagm.1997.0898
McKay, B.D., Piperno, A.: Practical graph isomorphism. II. J. Symb. Comput. 60, 94–112 (2014). https://doi.org/10.1016/j.jsc.2013.09.003
Máajová, E., Škoviera, M.: Permutation snarks of order 2 (mod 8). Acta Math. Univ. Comen. 88(3), 929–934 (2019)
Pisanski, T., Shawe-Taylor, J.: Cycle permutation graphs with large girth. Glas. Mat. 17, 233–236 (1982)
Pisanski, T., Shawe-Taylor, J.: Search for minimal trivalent cycle permutation graphs with girth nine. Disc. Math. 36(1), 113–115 (1981). https://doi.org/10.1016/0012-365X(81)90179-5
Read, R.C.: Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configurations*. In: Alspach, B., Hell, P., Miller, D.J. (eds.) Annals of Discrete Mathematics, Algorithmic Aspects of Combinatorics, vol. 2, pp. 107–120. Elsevier, Amsterdam (1978). https://doi.org/10.1016/S0167-5060(08)70325-X
Rozenfel’d, M.Z.: The construction and properties of certain classes of strongly regular graphs (Russian). Uspehi Mat. Nauk 28(3), 197–198 (1973)
Seymour, P.D.: Sums of circuits. In: Bondy, J.A., Murty, U.R.S. (eds.) Graph Theory and Related Topics, pp. 341–355. Academic Press, New York (1979)
Szekeres, G.: Polyhedral decompositions of cubic graphs. B. Aust. Math. Soc. 8(3), 367–387 (1973). https://doi.org/10.1017/S0004972700042660
Tutte, W.T.: A contribution to the theory of chromatic polynomials. Can. J. Math. 6, 80–91 (1954). https://doi.org/10.4153/CJM-1954-010-9
Zhang, C.Q.: Integer Flows and Cycle Covers of Graphs. No. 205 in Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York (1997)
Acknowledgements
The authors thank Steven Van Overberghe for suggesting the idea of Algorithm 2 and Edita Mácajová and Martin Škoviera for their valuable insights and contributions.
This research was supported by Internal Funds of KU Leuven and by an FWO grant with grant number G0AGX24N. Several of the computations for this work were carried out using the supercomputer infrastructure provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Goedgebeur, J., Renders, J. (2025). Generation of Cycle Permutation Graphs and Permutation Snarks. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-82670-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82669-6
Online ISBN: 978-3-031-82670-2
eBook Packages: Computer ScienceComputer Science (R0)