Skip to main content

Generation of Cycle Permutation Graphs and Permutation Snarks

  • Conference paper
  • First Online:
SOFSEM 2025: Theory and Practice of Computer Science (SOFSEM 2025)

Abstract

We present an algorithm for the efficient generation of all pairwise non-isomorphic cycle permutation graphs, i.e. cubic graphs with a 2-factor consisting of two chordless cycles, and non-hamiltonian cycle permutation graphs, from which the permutation snarks can easily be computed. This allows us to generate all cycle permutation graphs up to order 34 and all permutation snarks up to order 46, improving upon previous computational results by Brinkmann et al. Moreover, we give several improved lower bounds for interesting permutation snarks, such as for a smallest permutation snark of order \(6\bmod 8\) or a smallest permutation snark of girth at least 6. These computational results also allow us to complete a characterisation of the orders for which non-hamiltonian cycle permutation graphs exist, answering an open question by Klee from 1972, and yield many more counterexamples to a conjecture by Zhang.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brinkmann, G., Goedgebeur, J., Hägglund, J., Markström, K.: Generation and properties of snarks. J. Comb. Theory Ser. B 103(4), 468–488 (2013). https://doi.org/10.1016/j.jctb.2013.05.001

    Article  MathSciNet  MATH  Google Scholar 

  2. Brinkmann, G., Goedgebeur, J., Mckay, B.D.: The minimality of the Georges-Kelmans graph. Math. Comput. 91(335), 1483–1500 (2022). https://doi.org/10.1090/mcom/3701

    Article  MathSciNet  MATH  Google Scholar 

  3. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poincare 3(4), 433–438 (1967)

    MathSciNet  MATH  Google Scholar 

  4. Coolsaet, K., D’hondt, S., Goedgebeur, J.: House of graphs 2.0: a database of interesting graphs and more. Discret. Appl. Math. 325, 97–107 (2023). https://doi.org/10.1016/j.dam.2022.10.013

  5. Faradzev, I.A.: Algorithmic Studies in Combinatorics, chap. Generation of nonisomorphic graphs with a given degree sequence, pp. 11–19. Nauka (1978). (Russian)

    Google Scholar 

  6. Goedgebeur, J., Renders, J.: Cycle Permutation Graphs, (Version 1) [Computer software] (2024). https://github.com/JarneRenders/Cycle-Permutation-Graphs

  7. Goedgebeur, J., Renders, J.: Generation of cycle permutation graphs and permutation snarks (2024). https://arxiv.org/abs/2411.12606

  8. Klee, V.: Which generalized prisms admit H-circuits? In: Alavi, Y., Lick, D.R., White, A.T. (eds.) Graph Theory and Applications, pp. 173–178. Springer, Heidelberg (1972). https://doi.org/10.1007/BFb0067368

    Chapter  MATH  Google Scholar 

  9. McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306–324 (1998). https://doi.org/10.1006/jagm.1997.0898

    Article  MathSciNet  MATH  Google Scholar 

  10. McKay, B.D., Piperno, A.: Practical graph isomorphism. II. J. Symb. Comput. 60, 94–112 (2014). https://doi.org/10.1016/j.jsc.2013.09.003

    Article  MathSciNet  MATH  Google Scholar 

  11. Máajová, E., Škoviera, M.: Permutation snarks of order 2 (mod 8). Acta Math. Univ. Comen. 88(3), 929–934 (2019)

    Google Scholar 

  12. Pisanski, T., Shawe-Taylor, J.: Cycle permutation graphs with large girth. Glas. Mat. 17, 233–236 (1982)

    MathSciNet  MATH  Google Scholar 

  13. Pisanski, T., Shawe-Taylor, J.: Search for minimal trivalent cycle permutation graphs with girth nine. Disc. Math. 36(1), 113–115 (1981). https://doi.org/10.1016/0012-365X(81)90179-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Read, R.C.: Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configurations*. In: Alspach, B., Hell, P., Miller, D.J. (eds.) Annals of Discrete Mathematics, Algorithmic Aspects of Combinatorics, vol. 2, pp. 107–120. Elsevier, Amsterdam (1978). https://doi.org/10.1016/S0167-5060(08)70325-X

  15. Rozenfel’d, M.Z.: The construction and properties of certain classes of strongly regular graphs (Russian). Uspehi Mat. Nauk 28(3), 197–198 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Seymour, P.D.: Sums of circuits. In: Bondy, J.A., Murty, U.R.S. (eds.) Graph Theory and Related Topics, pp. 341–355. Academic Press, New York (1979)

    MATH  Google Scholar 

  17. Szekeres, G.: Polyhedral decompositions of cubic graphs. B. Aust. Math. Soc. 8(3), 367–387 (1973). https://doi.org/10.1017/S0004972700042660

    Article  MathSciNet  MATH  Google Scholar 

  18. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Can. J. Math. 6, 80–91 (1954). https://doi.org/10.4153/CJM-1954-010-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, C.Q.: Integer Flows and Cycle Covers of Graphs. No. 205 in Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York (1997)

    Google Scholar 

Download references

Acknowledgements

The authors thank Steven Van Overberghe for suggesting the idea of Algorithm 2 and Edita Mácajová and Martin Škoviera for their valuable insights and contributions.

This research was supported by Internal Funds of KU Leuven and by an FWO grant with grant number G0AGX24N. Several of the computations for this work were carried out using the supercomputer infrastructure provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarne Renders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goedgebeur, J., Renders, J. (2025). Generation of Cycle Permutation Graphs and Permutation Snarks. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82670-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82669-6

  • Online ISBN: 978-3-031-82670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics