Skip to main content

Parameterized Complexity of Feedback Vertex Set with Connectivity Constraints

  • Conference paper
  • First Online:
SOFSEM 2025: Theory and Practice of Computer Science (SOFSEM 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15538))

  • 31 Accesses

Abstract

The Feedback Vertex Set (FVS) problem, together with several of its variants, is arguably one of the most well-studied problems in the field of Parameterized Complexity. Two versions of the problem that have garnered significant interest involve the inclusion of an independence constraint and a connectivity constraint in the solution. This paper introduces generalized versions of both these variants, known as At least-c-FVS and At most-c-FVS, respectively, serving as extensions of Connected FVS and Independent FVS, respectively. The problem At most-c-FVS (resp., At least-c-FVS) is defined as follows: given a graph G and an integer k, the objective is to determine whether there exists a subset \(S \subseteq V(G)\), with \(|S| \le k\), such that the subgraph \(G-S\) is a forest and each component of G[S] contains at most c (resp., at least c) vertices. We study these problems in the realm of Parameterized Complexity and obtain the following results:

At most-c-FVS parameterized by k has a kernel of size \(\mathcal {O}(k^{3+c})\), and admits an FPT algorithm running in time \( 2^{\mathcal {O}(k) +c \cdot \log (k^2)} \cdot n^{\mathcal {O}(1)}\).

At least-c-FVS parameterized by k has no kernel of size \(k^{f(c)}\) for any computable function f (unless co-NP \(\subseteq \) NP/poly), but admits an FPT algorithm running in time \(2^{\mathcal {O}(k)}\cdot n^{\mathcal {O}(1)}\).

S. Jana—Supported by the Engineering and Physical Sciences Research Council (EPSRC) via the project MULTIPROCESS (grant no. EP/V044621/1)

S. Saurabh—Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819416); and he also acknowledges the support of Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use \(\mathcal {O}^*\) notation to hide factors polynomial in the input size.

References

  1. Agrawal, A., Gupta, S., Saurabh, S., Sharma, R.: Improved algorithms and combinatorial bounds for independent feedback vertex set. In: Guo, J., Hermelin, D. (eds.) IPEC 2016, Aarhus, Denmark, vol. 63 of LIPIcs, pp. 2:1–2:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.IPEC.2016.2

  2. Agrawal, A., Jain, P., Kanesh, L., Lokshtanov, D., Saurabh, S.: Conflict free feedback vertex set: a parameterized dichotomy. In: Potapov, I., Spirakis, Worrell, J. (eds.) MFCS 2018, vol. 117 of LIPIcs, pp. 53:1–53:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.53

  3. Agrawal, A., Lokshtanov, D., Mouawad, A.E., Saurabh, S.: Simultaneous feedback vertex set: a parameterized perspective. ACM Trans. Comput. Theory 10(4):18:1–18:25 (2018). https://doi.org/10.1145/3265027

  4. Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms. SIAM J. Disc. Math. 26(2), 695–717 (2012). https://doi.org/10.1137/100789403

    Article  MathSciNet  MATH  Google Scholar 

  5. Cygan, M., et al.: Solving connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algor. 18(2), 17:1–17:31 (2022). https://doi.org/10.1145/3506707

  6. Cygan, M., Pilipczuk, M., Pilipczuk, M.: On group feedback vertex set parameterized by the size of the cutset. Algorithmica 74(2), 630–642 (2016). https://doi.org/10.1007/s00453-014-9966-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In: Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Complexity Theory: Current Research, Dagstuhl Workshop, 2–8 February 1992, pp. 191–225. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  8. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

    MATH  Google Scholar 

  9. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006). https://doi.org/10.1016/j.jcss.2006.02.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Iwata, Y., Kobayashi, Y.: Improved analysis of highest-degree branching for feedback vertex set. Algorithmica 83(8), 2503–2520 (2021). https://doi.org/10.1007/s00453-021-00815-w

    Article  MathSciNet  MATH  Google Scholar 

  11. Jana, S., Lokshtanov, D., Mandal, S., Rai, A., Saurabh, S.: Parameterized approximation scheme for feedback vertex set. In: Leroux, J., Lombardy, S., Peleg, D. (eds.) 48th International Symposium on Mathematical Foundations of Computer Science, MFCS 2023, Bordeaux, France, 28 August–1 September 2023, vol. 272 of LIPIcs, pp. 56:1–56:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPIcs.MFCS.2023.56

  12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Computer Computations, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, 20–22 March 1972, The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  13. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-Color. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006). https://doi.org/10.1007/11917496_6

    Chapter  MATH  Google Scholar 

  14. Li, J., Nederlof, J.: Detecting feedback vertex sets of size k in O\(^*\) (2.7k) time. ACM Trans. Algor. 18(4), 34:1–34:26 (2022). https://doi.org/10.1145/3504027

  15. Li, S., Pilipczuk, M.: An improved FPT algorithm for independent feedback vertex set. Theory Comput. Syst. 64(8), 1317–1330 (2020). https://doi.org/10.1007/s00224-020-09973-w

    Article  MathSciNet  MATH  Google Scholar 

  16. Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms for subset feedback vertex set. ACM Trans. Algor. 14(1), 7:1–7:37 (2018). https://doi.org/10.1145/3155299

  17. Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent feedback vertex set. Theor. Comput. Sci. 461, 65–75 (2012). https://doi.org/10.1016/j.tcs.2012.02.012

    Article  MathSciNet  MATH  Google Scholar 

  18. Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for connected feedback vertex set. J. Comb. Optim. 24(2), 131–146 (2012). https://doi.org/10.1007/s10878-011-9394-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for finding feedback vertex sets. ACM Trans. Algor. 2(3), 403–415 (2006). https://doi.org/10.1145/1159892.1159898

    Article  MathSciNet  MATH  Google Scholar 

  20. Robertson, N., Seymour, P.D.: Graph minors. xiii. The disjoint paths problem. J. Comb. Theory B 63(1), 65–110 (1995). https://doi.org/10.1006/jctb.1995.1006

    Article  MathSciNet  MATH  Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory B 92(2), 325–357 (2004). https://doi.org/10.1016/j.jctb.2004.08.001

    Article  MathSciNet  MATH  Google Scholar 

  22. Thomassé, S: A 4k\( ^{\text{2}}\) kernel for feedback vertex set. ACM Trans. Algor. 6(2), 32:1–32:8 (2010). https://doi.org/10.1145/1721837.1721848

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Jana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abhinav, A., Jana, S., Purohit, N., Sahu, A., Saurabh, S. (2025). Parameterized Complexity of Feedback Vertex Set with Connectivity Constraints. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82670-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82669-6

  • Online ISBN: 978-3-031-82670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics