Abstract
The Feedback Vertex Set (FVS) problem, together with several of its variants, is arguably one of the most well-studied problems in the field of Parameterized Complexity. Two versions of the problem that have garnered significant interest involve the inclusion of an independence constraint and a connectivity constraint in the solution. This paper introduces generalized versions of both these variants, known as At least-c-FVS and At most-c-FVS, respectively, serving as extensions of Connected FVS and Independent FVS, respectively. The problem At most-c-FVS (resp., At least-c-FVS) is defined as follows: given a graph G and an integer k, the objective is to determine whether there exists a subset \(S \subseteq V(G)\), with \(|S| \le k\), such that the subgraph \(G-S\) is a forest and each component of G[S] contains at most c (resp., at least c) vertices. We study these problems in the realm of Parameterized Complexity and obtain the following results:
– At most-c-FVS parameterized by k has a kernel of size \(\mathcal {O}(k^{3+c})\), and admits an FPT algorithm running in time \( 2^{\mathcal {O}(k) +c \cdot \log (k^2)} \cdot n^{\mathcal {O}(1)}\).
– At least-c-FVS parameterized by k has no kernel of size \(k^{f(c)}\) for any computable function f (unless co-NP \(\subseteq \) NP/poly), but admits an FPT algorithm running in time \(2^{\mathcal {O}(k)}\cdot n^{\mathcal {O}(1)}\).
S. Jana—Supported by the Engineering and Physical Sciences Research Council (EPSRC) via the project MULTIPROCESS (grant no. EP/V044621/1)
S. Saurabh—Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819416); and he also acknowledges the support of Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
We use \(\mathcal {O}^*\) notation to hide factors polynomial in the input size.
References
Agrawal, A., Gupta, S., Saurabh, S., Sharma, R.: Improved algorithms and combinatorial bounds for independent feedback vertex set. In: Guo, J., Hermelin, D. (eds.) IPEC 2016, Aarhus, Denmark, vol. 63 of LIPIcs, pp. 2:1–2:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.IPEC.2016.2
Agrawal, A., Jain, P., Kanesh, L., Lokshtanov, D., Saurabh, S.: Conflict free feedback vertex set: a parameterized dichotomy. In: Potapov, I., Spirakis, Worrell, J. (eds.) MFCS 2018, vol. 117 of LIPIcs, pp. 53:1–53:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.53
Agrawal, A., Lokshtanov, D., Mouawad, A.E., Saurabh, S.: Simultaneous feedback vertex set: a parameterized perspective. ACM Trans. Comput. Theory 10(4):18:1–18:25 (2018). https://doi.org/10.1145/3265027
Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms. SIAM J. Disc. Math. 26(2), 695–717 (2012). https://doi.org/10.1137/100789403
Cygan, M., et al.: Solving connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algor. 18(2), 17:1–17:31 (2022). https://doi.org/10.1145/3506707
Cygan, M., Pilipczuk, M., Pilipczuk, M.: On group feedback vertex set parameterized by the size of the cutset. Algorithmica 74(2), 630–642 (2016). https://doi.org/10.1007/s00453-014-9966-5
Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In: Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Complexity Theory: Current Research, Dagstuhl Workshop, 2–8 February 1992, pp. 191–225. Cambridge University Press, Cambridge (1992)
Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)
Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006). https://doi.org/10.1016/j.jcss.2006.02.001
Iwata, Y., Kobayashi, Y.: Improved analysis of highest-degree branching for feedback vertex set. Algorithmica 83(8), 2503–2520 (2021). https://doi.org/10.1007/s00453-021-00815-w
Jana, S., Lokshtanov, D., Mandal, S., Rai, A., Saurabh, S.: Parameterized approximation scheme for feedback vertex set. In: Leroux, J., Lombardy, S., Peleg, D. (eds.) 48th International Symposium on Mathematical Foundations of Computer Science, MFCS 2023, Bordeaux, France, 28 August–1 September 2023, vol. 272 of LIPIcs, pp. 56:1–56:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPIcs.MFCS.2023.56
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Computer Computations, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, 20–22 March 1972, The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-Color. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006). https://doi.org/10.1007/11917496_6
Li, J., Nederlof, J.: Detecting feedback vertex sets of size k in O\(^*\) (2.7k) time. ACM Trans. Algor. 18(4), 34:1–34:26 (2022). https://doi.org/10.1145/3504027
Li, S., Pilipczuk, M.: An improved FPT algorithm for independent feedback vertex set. Theory Comput. Syst. 64(8), 1317–1330 (2020). https://doi.org/10.1007/s00224-020-09973-w
Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms for subset feedback vertex set. ACM Trans. Algor. 14(1), 7:1–7:37 (2018). https://doi.org/10.1145/3155299
Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent feedback vertex set. Theor. Comput. Sci. 461, 65–75 (2012). https://doi.org/10.1016/j.tcs.2012.02.012
Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for connected feedback vertex set. J. Comb. Optim. 24(2), 131–146 (2012). https://doi.org/10.1007/s10878-011-9394-2
Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for finding feedback vertex sets. ACM Trans. Algor. 2(3), 403–415 (2006). https://doi.org/10.1145/1159892.1159898
Robertson, N., Seymour, P.D.: Graph minors. xiii. The disjoint paths problem. J. Comb. Theory B 63(1), 65–110 (1995). https://doi.org/10.1006/jctb.1995.1006
Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory B 92(2), 325–357 (2004). https://doi.org/10.1016/j.jctb.2004.08.001
Thomassé, S: A 4k\( ^{\text{2}}\) kernel for feedback vertex set. ACM Trans. Algor. 6(2), 32:1–32:8 (2010). https://doi.org/10.1145/1721837.1721848
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Abhinav, A., Jana, S., Purohit, N., Sahu, A., Saurabh, S. (2025). Parameterized Complexity of Feedback Vertex Set with Connectivity Constraints. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-82670-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82669-6
Online ISBN: 978-3-031-82670-2
eBook Packages: Computer ScienceComputer Science (R0)