Skip to main content

Shortest Longest-Path Graph Orientations for Trees

  • Conference paper
  • First Online:
SOFSEM 2025: Theory and Practice of Computer Science (SOFSEM 2025)

Abstract

Graph orientation transforms an undirected graph into a directed graph by assigning a direction to each edge. Among the many different optimization problems related to graph orientations, we focus here on the Shortest Longest-Path Orientation problem (SLPO) which is a generalization of the well-known Minimum Graph Coloring problem. The input to SLPO is an edge-bi-weighted undirected graph in which every edge has two (possibly different and not necessarily positive) lengths associated with its two directions. The goal is to find an orientation of the input graph that minimizes the length of the longest simple directed path. Recently, polynomial-time algorithms for simple graph structures such as paths, cycles, stars, and trees were proposed, and a new polynomial-time inapproximability result was also established. This paper presents (i) an \(O(n^2 \log n)\)-time algorithm for trees, which is a significant improvement over the previously fastest algorithm whose time complexity was \(\Omega (n^{14})\) and (ii) polynomial-time algorithms for trees and spiders that run even faster than (i) as long as every edge weight is an integer and the total weight of the edges is sub-exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This algorithm differs from the known ones for stars in [3].

References

  1. Asahiro, Y., Jansson, J., Miyano, E., Ono, H.: Graph orientations optimizing the number of light or heavy vertices. J. Graph Algor. Appl. 19(1), 441–465 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asahiro, Y., Jansson, J., Miyano, E., Ono, H., Zenmyo, K.: Approximation algorithms for the graph orientation minimizing the maximum weighted outdegree. J. Comb. Optim. 22(1), 78–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asahiro, Y., et al.: Shortest longest-path graph orientations. In: Proceedings of the 29th International Computing and Combinatorics Conference (COCOON 2023). LNCS, vol. 14422 , pp. 141–154. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-49190-0_10

  4. Asahiro, Y., Miyano, E., Ono, H., Zenmyo, K.: Graph orientation algorithms to minimize the maximum outdegree. Int. J. Found. Comput. Sci. 18(2), 197–215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borradaile, G., Iglesias, J., Migler, T., Ochoa, A., Wilfong, G., Zhang, L.: Egalitarian graph orientations. J. Graph Algor. Appl. 21(4), 687–708 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and compaction of adjacency matrices. Theor. Comput. Sci. 86(2), 243–266 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. Disc. Math. 30(3), 289–293 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deming, R.W.: Acyclic orientations of a graph and chromatic and independence numbers. J. Comb. Theory Ser. B 26(1), 101–110 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elberfeld, M., et al.: On the approximability of reachability-preserving network orientations. Internet Math. 7(4), 209–232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gallai, T.: On directed graphs and circuits. In: Theory of Graphs (Proceedings of the Colloquium held at Tihany 1966), pp. 115–118. Akadémiai Kiadó (1968)

    Google Scholar 

  11. Hasse, M.: Zur algebraischen Begründung der Graphentheorie. I. Mathematische Nachrichten 28(5–6), 275–290 (1965)

    Article  MATH  Google Scholar 

  12. Hörsch, F.: On orientations maximizing total arc-connectivity. Theor. Comput. Sci. 978, 114176 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Plenum Press (1972)

    Google Scholar 

  14. Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An algorithm for orienting graphs based on cause-effect pairs and its applications to orienting protein networks. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS, vol. 5251, pp. 222–232. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87361-7_19

    Chapter  MATH  Google Scholar 

  15. Roy, B.: Nombre chromatique et plus longs chemins d’un graphe. Revue française d’informatique et de recherche opérationnelle 1(5), 129–132 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. Venkateswaran, V.: Minimizing maximum indegree. Disc. Appl. Math. 143(1–3), 374–378 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vitaver, L.M.: Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix. In: Proceedings of the USSR Academy of Sciences, vol. 147, pp. 758–759. Nauka (1967). (in Russian)

    Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP22K11915 and JP24K02902.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Asahiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asahiro, Y. et al. (2025). Shortest Longest-Path Graph Orientations for Trees. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82670-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82669-6

  • Online ISBN: 978-3-031-82670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics