Abstract
The objective of this article is to propose two natural generalizations of covering edges by edges (Edge Dominating Set) and study these problems from the multivariate lens. The first is simply considering Edge Dominating Set on hypergraphs, called Hyperedge Dominating Set. Given a hypergraph \(\mathcal{H}=( \mathcal U,\mathcal{F})\), a set \(F \subseteq \mathcal{F}\) is called a hyperedge dominating set if all hyperedges intersect with at least one hyperedge \(e \in F\). The objective of the Hyperedge Dominating Set problem is to determine whether a hyperedge dominating set of size at most k exists. We find it quite surprising that such generalization is missing from the literature. The second extension we consider is the t-Path Edge Dominating Set problem. In this problem, the input consists of a graph G and an integer k, and the goal is to find a set \(\mathcal{P}\) of at most k paths, each of length at most t, such that for every edge in G, at least one of its endpoints belongs to the vertex set V(P) for some \(P \in \mathcal{P}\). We show the following results and add to the literature on Edge Dominating Set.
-
Hyperedge Dominating Set is FPT parameterized by \(k+d\), where d is the maximum size of a hyperedge in the input hypergraph.
-
A kernel of size \(\mathcal {O}(k^d)\) can be obtained for the Hyperedge Dominating Set problem, where d is the maximum size of a hyperedge in the input hypergraph.
-
The problem of finding a Hyperedge Dominating Set is computationally difficult; specifically it is W[2]-hard when parameterized by k. This hardness result holds even when each vertex is contained in at most 2 hyperedges and the intersection between any two hyperedges is at most 1.
-
t-Path Edge Dominating Set is FPT when parameterized by \(k+t\). Additionally, it has a kernel of size \(\mathcal {O}(k^3t^3)\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The \({\mathcal O^{\star }}\) notation hides polynomial factors.
- 2.
Proofs of results marked with \(\star \) are omitted due to paucity of space.
References
Alon, N., Yuster, R., Zwick, U.: Color-coding: a new method for finding simple paths, cycles and other small subgraphs within large graphs. In: Leighton, F.T., Goodrich, M.T. (eds.) Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23–25 May 1994, Montréal, Québec, Canada, pp. 326–335. ACM (1994). https://doi.org/10.1145/195058.195179
Bevern, R.: Towards optimal and expressive kernelization for d-hitting set. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 121–132. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32241-9_11
Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009). https://doi.org/10.1137/070683933
Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069_21
Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1 &2), 109–131 (1995). https://doi.org/10.1016/0304-3975(94)00097-3
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-0515-9
Escoffier, B., Monnot, J., Paschos, V.T., Xiao, M.: New results on polynomial inapproximability and fixed parameter approximability of edge dominating set. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 25–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33293-7_5
Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998). https://doi.org/10.1145/285055.285059
Fernau, H.: edge dominating set: efficient enumeration-based exact algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 142–153. Springer, Heidelberg (2006). https://doi.org/10.1007/11847250_13
Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining branching and treewidth. Algorithmica 54(2), 181–207 (2009). https://doi.org/10.1007/s00453-007-9133-3
Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016). https://doi.org/10.1145/2886094
Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight edge dominating set problem. Discret. Appl. Math. 118(3), 199–207 (2002). https://doi.org/10.1016/S0166-218X(00)00383-8
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)
Hagerup, T.: Kernels for edge dominating set: simpler or smaller. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 491–502. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_44
Harris, D.G., Narayanaswamy, N.S.: A faster algorithm for vertex cover parameterized by solution size. CoRR abs/2205.08022 (2022). https://doi.org/10.48550/arXiv.2205.08022
Harris, D.G., Narayanaswamy, N.S.: A faster algorithm for vertex cover parameterized by solution size. In: Beyersdorff, O., Kanté, M.M., Kupferman, O., Lokshtanov, D. (eds.) 41st International Symposium on Theoretical Aspects of Computer Science, STACS 2024, 12–14 March 2024, Clermont-Ferrand, France. LIPIcs, vol. 289, pp. 40:1–40:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2024). https://doi.org/10.4230/LIPIcs.STACS.2024.40
Iwaide, K., Nagamochi, H.: An improved algorithm for parameterized edge dominating set problem. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015. LNCS, vol. 8973, pp. 234–245. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15612-5_21
Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM Symposium on Theory of Computing, 30 April–2 May 1973, Austin, Texas, USA, pp. 38–49. ACM (1973). https://doi.org/10.1145/800125.804034
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer Computations, held 20–22 March 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, pp. 85–103. The IBM Research Symposia Series, Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Lampis, M.: A kernel of order 2 k-c log k for vertex cover. Inf. Process. Lett. 111(23–24), 1089–1091 (2011). https://doi.org/10.1016/j.ipl.2011.09.003
Lin, B., Ren, X., Sun, Y., Wang, X.: Constant approximating parameterized k-setcover is w[2]-hard. CoRR abs/2202.04377 (2022). https://arxiv.org/abs/2202.04377
Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191. IEEE Computer Society (1995). https://doi.org/10.1109/SFCS.1995.492475
Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-hitting set. J. Discret. Algorithms 1(1), 89–102 (2003). https://doi.org/10.1016/S1570-8667(03)00009-1
Norman, R.Z., Rabin, M.O.: An algorithm for a minimum cover of a graph (1959). https://api.semanticscholar.org/CorpusID:120383003
Philip, G., Raman, V., Sikdar, S.: Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms 9(1), 11:1–11:23 (2012). https://doi.org/10.1145/2390176.2390187
Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating maximal independent sets and other techniques. Theory Comput. Syst. 41(3), 563–587 (2007). https://doi.org/10.1007/s00224-007-1334-2
van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 214–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-4_20
Soleimanfallah, A., Yeo, A.: A kernel of order 2k-c for vertex cover. Discret. Math. 311(10–11), 892–895 (2011). https://doi.org/10.1016/j.disc.2011.02.014
Xiao, M., Kloks, T., Poon, S.-H.: New parameterized algorithms for the edge dominating set problem. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 604–615. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-0_54
Xiao, M., Nagamochi, H.: A refined exact algorithm for edge dominating set. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 360–372. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29952-0_36
Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980). https://doi.org/10.1137/0138030
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Aute, S., Panolan, F., Saha, S., Saurabh, S., Upasana, A. (2025). Parameterized Complexity of Generalizations of Edge Dominating Set. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-82670-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82669-6
Online ISBN: 978-3-031-82670-2
eBook Packages: Computer ScienceComputer Science (R0)