Skip to main content

Parameterized Complexity of Generalizations of Edge Dominating Set

  • Conference paper
  • First Online:
SOFSEM 2025: Theory and Practice of Computer Science (SOFSEM 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15538))

  • 5 Accesses

Abstract

The objective of this article is to propose two natural generalizations of covering edges by edges (Edge Dominating Set) and study these problems from the multivariate lens. The first is simply considering Edge Dominating Set on hypergraphs, called Hyperedge Dominating Set. Given a hypergraph \(\mathcal{H}=( \mathcal U,\mathcal{F})\), a set \(F \subseteq \mathcal{F}\) is called a hyperedge dominating set if all hyperedges intersect with at least one hyperedge \(e \in F\). The objective of the Hyperedge Dominating Set problem is to determine whether a hyperedge dominating set of size at most k exists. We find it quite surprising that such generalization is missing from the literature. The second extension we consider is the t-Path Edge Dominating Set problem. In this problem, the input consists of a graph G and an integer k, and the goal is to find a set \(\mathcal{P}\) of at most k paths, each of length at most t, such that for every edge in G, at least one of its endpoints belongs to the vertex set V(P) for some \(P \in \mathcal{P}\). We show the following results and add to the literature on Edge Dominating Set.

  • Hyperedge Dominating Set is FPT parameterized by \(k+d\), where d is the maximum size of a hyperedge in the input hypergraph.

  • A kernel of size \(\mathcal {O}(k^d)\) can be obtained for the Hyperedge Dominating Set problem, where d is the maximum size of a hyperedge in the input hypergraph.

  • The problem of finding a Hyperedge Dominating Set is computationally difficult; specifically it is W[2]-hard when parameterized by k. This hardness result holds even when each vertex is contained in at most 2 hyperedges and the intersection between any two hyperedges is at most 1.

  • t-Path Edge Dominating Set is FPT when parameterized by \(k+t\). Additionally, it has a kernel of size \(\mathcal {O}(k^3t^3)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The \({\mathcal O^{\star }}\) notation hides polynomial factors.

  2. 2.

    Proofs of results marked with \(\star \) are omitted due to paucity of space.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding: a new method for finding simple paths, cycles and other small subgraphs within large graphs. In: Leighton, F.T., Goodrich, M.T. (eds.) Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23–25 May 1994, Montréal, Québec, Canada, pp. 326–335. ACM (1994). https://doi.org/10.1145/195058.195179

  2. Bevern, R.: Towards optimal and expressive kernelization for d-hitting set. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 121–132. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32241-9_11

    Chapter  MATH  Google Scholar 

  3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009). https://doi.org/10.1137/070683933

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069_21

    Chapter  MATH  Google Scholar 

  5. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3

  6. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1 &2), 109–131 (1995). https://doi.org/10.1016/0304-3975(94)00097-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-0515-9

  8. Escoffier, B., Monnot, J., Paschos, V.T., Xiao, M.: New results on polynomial inapproximability and fixed parameter approximability of edge dominating set. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 25–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33293-7_5

    Chapter  MATH  Google Scholar 

  9. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998). https://doi.org/10.1145/285055.285059

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernau, H.: edge dominating set: efficient enumeration-based exact algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 142–153. Springer, Heidelberg (2006). https://doi.org/10.1007/11847250_13

    Chapter  MATH  Google Scholar 

  11. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining branching and treewidth. Algorithmica 54(2), 181–207 (2009). https://doi.org/10.1007/s00453-007-9133-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016). https://doi.org/10.1145/2886094

  13. Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight edge dominating set problem. Discret. Appl. Math. 118(3), 199–207 (2002). https://doi.org/10.1016/S0166-218X(00)00383-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  15. Hagerup, T.: Kernels for edge dominating set: simpler or smaller. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 491–502. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_44

    Chapter  MATH  Google Scholar 

  16. Harris, D.G., Narayanaswamy, N.S.: A faster algorithm for vertex cover parameterized by solution size. CoRR abs/2205.08022 (2022). https://doi.org/10.48550/arXiv.2205.08022

  17. Harris, D.G., Narayanaswamy, N.S.: A faster algorithm for vertex cover parameterized by solution size. In: Beyersdorff, O., KantĂ©, M.M., Kupferman, O., Lokshtanov, D. (eds.) 41st International Symposium on Theoretical Aspects of Computer Science, STACS 2024, 12–14 March 2024, Clermont-Ferrand, France. LIPIcs, vol. 289, pp. 40:1–40:18. Schloss Dagstuhl - Leibniz-Zentrum fĂĽr Informatik (2024). https://doi.org/10.4230/LIPIcs.STACS.2024.40

  18. Iwaide, K., Nagamochi, H.: An improved algorithm for parameterized edge dominating set problem. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015. LNCS, vol. 8973, pp. 234–245. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15612-5_21

    Chapter  MATH  Google Scholar 

  19. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM Symposium on Theory of Computing, 30 April–2 May 1973, Austin, Texas, USA, pp. 38–49. ACM (1973). https://doi.org/10.1145/800125.804034

  20. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer Computations, held 20–22 March 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, pp. 85–103. The IBM Research Symposia Series, Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  21. Lampis, M.: A kernel of order 2 k-c log k for vertex cover. Inf. Process. Lett. 111(23–24), 1089–1091 (2011). https://doi.org/10.1016/j.ipl.2011.09.003

    Article  MATH  Google Scholar 

  22. Lin, B., Ren, X., Sun, Y., Wang, X.: Constant approximating parameterized k-setcover is w[2]-hard. CoRR abs/2202.04377 (2022). https://arxiv.org/abs/2202.04377

  23. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 182–191. IEEE Computer Society (1995). https://doi.org/10.1109/SFCS.1995.492475

  24. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-hitting set. J. Discret. Algorithms 1(1), 89–102 (2003). https://doi.org/10.1016/S1570-8667(03)00009-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Norman, R.Z., Rabin, M.O.: An algorithm for a minimum cover of a graph (1959). https://api.semanticscholar.org/CorpusID:120383003

  26. Philip, G., Raman, V., Sikdar, S.: Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms 9(1), 11:1–11:23 (2012). https://doi.org/10.1145/2390176.2390187

  27. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating maximal independent sets and other techniques. Theory Comput. Syst. 41(3), 563–587 (2007). https://doi.org/10.1007/s00224-007-1334-2

    Article  MathSciNet  MATH  Google Scholar 

  28. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 214–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-4_20

    Chapter  MATH  Google Scholar 

  29. Soleimanfallah, A., Yeo, A.: A kernel of order 2k-c for vertex cover. Discret. Math. 311(10–11), 892–895 (2011). https://doi.org/10.1016/j.disc.2011.02.014

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiao, M., Kloks, T., Poon, S.-H.: New parameterized algorithms for the edge dominating set problem. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 604–615. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-0_54

    Chapter  MATH  Google Scholar 

  31. Xiao, M., Nagamochi, H.: A refined exact algorithm for edge dominating set. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 360–372. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29952-0_36

    Chapter  MATH  Google Scholar 

  32. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980). https://doi.org/10.1137/0138030

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhada Aute .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aute, S., Panolan, F., Saha, S., Saurabh, S., Upasana, A. (2025). Parameterized Complexity of Generalizations of Edge Dominating Set. In: KráloviÄŤ, R., KĹŻrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82670-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82669-6

  • Online ISBN: 978-3-031-82670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics