Skip to main content

On the Complexity of Minimum Membership Dominating Set

  • Conference paper
  • First Online:
SOFSEM 2025: Theory and Practice of Computer Science (SOFSEM 2025)

Abstract

In this paper, we study a variant of Domination called Minimum Membership Dominating Set, in short MMDS. The input to the problem is a graph G and an integer k (which is the membership parameter). The goal is to compute a set \(S\subseteq V(G)\) such that for each \(v\in V(G)\), \(1\le |N[v]\cap S|\le k\). Notice that there is no requirement on the size of S. We extend the study on this problem from the parameterized complexity perspective. The following are the results of this paper.

  • Agrawal et al. (Algorithmica 2023) showed that MMDS is W[1]-hard parameterized by pathwidth of the input graph. They asked as open questions if MMDS is FPT when parameterized by maximum degree, distance to bounded degree graphs or maximum number of leaves in a spanning tree.

    We show that MMDS is NP-hard even on graphs with maximum degree three. This answers the first two questions in negative. We consider the parameter distance to disjoint paths that generalizes the maximum number of leaves in a spanning tree and show that the problem is FPT.

  • Recently Sangam et al. (2024) showed that MMDS is FPT parameterized by the combined parameters distance to cluster and membership. However the running time of the algorithm is triple exponential. We design a single exponential FPT algorithm parameterized by distance to cluster alone. We also obtain an FPT algorithm parameterized by distance to co-cluster.

  • We show that MMDS can be solved in time \(k^{5\textsf{cw}}n^{O(1)}\) where \(\mathsf cw\) is the cliquewidth of the input graph. This implies a polynomial time algorithm for graphs of bounded cliquewidth. In particular distance hereditary graphs that have cliquewidth at most three, thereby resolving an open question asked by Sangam et al. in the above paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We would like to note that the result in [11] subsumes our result. We were unaware of this at the time of submission and we thank the anonymous reviewers for bringing this to our notice.

References

  1. Agrawal, A., Choudhary, P., Narayanaswamy, N.S., Nisha, K.K., Ramamoorthi, V.: Parameterized complexity of minimum membership dominating set. Algorithmica 85(11), 3430–3452 (2023)

    Google Scholar 

  2. Kuhn, F., von Rickenbach, P., Wattenhofer, R., Welzl, E., Zollinger, A.: Interference in cellular networks: the minimum membership set cover problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 188–198. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_21

    Chapter  MATH  Google Scholar 

  3. Michael Dom, Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Minimum membership set covering and the consecutive ones property. In Algorithm Theory - SWAT 2006, 10th ScandinavianWorkshop on Algorithm Theory, Proceedings, volume 4059 of Lecture Notes in Computer Science, pages 339–350. Springer, 2006

    Google Scholar 

  4. Mitchell, J.S.B., Pandit, S.: Minimum membership covering and hitting. Theor. Comput. Sci. 876, 1–11 (2021)

    Google Scholar 

  5. Narayanaswamy, N.S., Dhannya, S.M., Ramya, C.: Minimum membership hitting sets of axis parallel segments. In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 638–649. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1_53

    Chapter  MATH  Google Scholar 

  6. Biggs, N.: Perfect codes in graphs. J. Comb. Theory Ser. B 15(3), 289–296 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kratochvíl, J.: Perfect codes over graphs. J. Comb. Theory Ser. B 40(2), 224–228 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, H., Xia, B., Zhou, S.: Perfect codes in Cayley graphs. SIAM J. Discret. Math. 32(1), 548–559 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kratochvíl, J.: Perfect codes in graphs and their powers. Ph.D. thesis, Ph.D. dissertation (in Czech), Charles University, Prague (1987)

    Google Scholar 

  10. Cesati, M.: Perfect code is W[1]-complete. Inf. Process. Lett. 81(3), 163–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fellows, M.R., Hoover, M.N.: Perfect domination. Australas. J. Comb. 3, 141–150 (1991)

    MathSciNet  MATH  Google Scholar 

  12. Telle, J.A.: Complexity of domination-type problems in graphs. Nord. J. Comput. 1(1), 157–171 (1994)

    Google Scholar 

  13. Telle, J.A.: Vertex partitioning problems: characterization, complexity and algorithms on partial k-trees. Ph.D. thesis, University of Oregon (1994)

    Google Scholar 

  14. Rooij, J.M.M.: Fast algorithms for join operations on tree decompositions. In: Fomin, F.V., Kratsch, S., van Leeuwen, E.J. (eds.) Treewidth, Kernels, and Algorithms. LNCS, vol. 12160, pp. 262–297. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42071-0_18

    Chapter  MATH  Google Scholar 

  15. Focke, J., et al.: Tight complexity bounds for counting generalized dominating sets in bounded-treewidth graphs. In: Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, pp. 3664–3683. SIAM (2023)

    Google Scholar 

  16. Chellali, M., Haynes, T.W., Hedetniemi, S.T., McRae, A.A.: [1, 2]-sets in graphs. Discret. Appl. Math. 161(18), 2885–2893 (2013)

    Article  MATH  Google Scholar 

  17. Meybodi, M.A., Fomin, F.V., Mouawad, A.E., Panolan, F.: On the parameterized complexity of [1, j]-domination problems. Theor. Comput. Sci. 804, 207–218 (2020)

    Google Scholar 

  18. Reddy, S.B., Kare, A.S.: Algorithms for minimum membership dominating set problem (2024). https://arxiv.org/abs/2408.00797

  19. Kucera, M., Suchý, O.: Minimum eccentricity shortest path problem with respect to structural parameters. Algorithmica 85(3), 762–782 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret. Appl. Math. 101(1–3), 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Darmann, A., Döcker, J.: On simplified NP-complete variants of monotone3-sat. Discret. Appl. Math. 292, 45–58 (2021)

    Article  MATH  Google Scholar 

  23. Cull, P., Nelson, I.: Error-correcting codes on the towers of Hanoi graphs. Discret. Math. 208–209, 157–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B 96(4), 514–528 (2006)

    Google Scholar 

  25. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. Int. J. Found. Comput. Sci. 11(3), 423–443 (2000)

    Google Scholar 

  26. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Karthika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karthika, D., Muthucumaraswamy, R., Bentert, M., Bhyravarapu, S., Saurabh, S., Seetharaman, S. (2025). On the Complexity of Minimum Membership Dominating Set. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82670-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82669-6

  • Online ISBN: 978-3-031-82670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics