Skip to main content

On the Structural Parameterized Complexity of Defective Coloring

  • Conference paper
  • First Online:
SOFSEM 2025: Theory and Practice of Computer Science (SOFSEM 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15538))

  • 16 Accesses

Abstract

In this paper, we consider the problem Defective Coloring. Given a graph G and two positive integers k and \(\Delta ^*\), the objective is to determine whether it is possible to obtain a coloring (not necessarily proper) of the vertices of G using at most k colors such that each vertex in a color class c has at most \(\Delta ^*\) neighbors in the same color class. Defective Coloring is a generalization of Graph Coloring with \(\Delta ^*=0\). The optimization variant of this problem, which aims to find the minimum number of colors k, is known to be NP-hard even for split graphs and cographs.

Belmonte, Lampis, and Mitsou (SIDMA 2020) showed that Defective Coloring is W[1]-hard when parameterized by tree-width, path-width, tree-depth, or feedback vertex set. The problem is W[1]-hard parameterized by modular-width or clique-width as Defective Coloring is NP-hard on cographs. They asked as an open question whether Defective Coloring is fixed-parameter tractable (\(\texttt {FPT}\)) when parameterized by modular-width, clique-width or neighborhood diversity combined with either k or \(\Delta ^*\). In an effort to address the question concerning modular-width, this study investigates the parameters neighborhood diversity and twin-cover, which are special cases of modular-width. We show that Defective Coloring is \(\texttt {FPT}\) when parameterized by twin-cover, distance to disjoint paths, or the combined parameters neighborhood diversity and k. The latter result implies an FPT algorithm for complete-d-partite graphs, a subclass of cographs, parameterized by d. This provides a partial response to an open question raised in the above paper. We present an algorithm for graphs with bounded distance to d-degree and as a corollary we obtain an FPTalgorithm parameterized by distance to disjoint paths. Furthermore, the study also presents a 1-additive approximation algorithm for split graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achuthan, N., Achuthan, N.R., Simanihuruk, M.: On minimal triangle-free graphs with prescribed k-defective chromatic number. Disc. Math. 311(13), 1119–1127 (2011). https://doi.org/10.1016/j.disc.2010.08.013

    Article  MathSciNet  MATH  Google Scholar 

  2. Araújo, J., Bermond, J., Giroire, F., Havet, F., Mazauric, D., Modrzejewski, R.: Weighted improper colouring. J. Disc. Algor. 16, 53–66 (2012). https://doi.org/10.1016/j.jda.2012.07.001

    Article  MathSciNet  MATH  Google Scholar 

  3. Archetti, C., Bianchessi, N., Hertz, A., Colombet, A., Gagnon, F.: Directed weighted improper coloring for cellular channel allocation. Disc. Appl. Math. 182, 46–60 (2015). https://doi.org/10.1016/j.dam.2013.11.018

    Article  MathSciNet  MATH  Google Scholar 

  4. Bang-Jensen, J., Halldórsson, M.M.: Vertex coloring edge-weighted digraphs. Inf. Process. Lett. 115(10), 791–796 (2015). https://doi.org/10.1016/j.ipl.2015.05.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Belmonte, R., Lampis, M., Mitsou, V.: Parameterized (approximate) defective coloring. SIAM J. Disc. Math. 34(2), 1084–1106 (2020). https://doi.org/10.1137/18M1223666

    Article  MathSciNet  MATH  Google Scholar 

  6. Belmonte, R., Lampis, M., Mitsou, V.: Defective coloring on classes of perfect graphs. Disc. Math. Theor. Comput. Sci. 24(1) (2022). https://doi.org/10.46298/dmtcs.4926. https://dmtcs.episciences.org/8918

  7. Bermond, J., Havet, F., Huc, F., Sales, C.L.: Improper coloring of weighted grid and hexagonal graphs. Disc. Math. Algor. Appl. 2(3), 395–412 (2010). https://doi.org/10.1142/S1793830910000747

    Article  MathSciNet  MATH  Google Scholar 

  8. Cowen, L.J., Cowen, R., Woodall, D.R.: Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency. J. Graph Theory 10(2), 187–195 (1986). https://doi.org/10.1002/jgt.3190100207

    Article  MathSciNet  MATH  Google Scholar 

  9. Cumberbatch, J., Lauri, J., Mitillos, C.: Exact defective colorings of graphs. CoRR arxiv:2109.05255 (2021)

  10. Cygan, M., et al.: Parameterized Algorithms, vol. 4. Springer, Heidelberg (2015)

    Google Scholar 

  11. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Comb. 7(1), 49–65 (1987). https://doi.org/10.1007/BF02579200

    Article  MathSciNet  MATH  Google Scholar 

  12. Frick, M., Henning, M.A.: Extremal results on defective colorings of graphs. Disc. Math. 126(1–3), 151–158 (1994). https://doi.org/10.1016/0012-365X(94)90260-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Ganian, R.: Twin-cover: beyond vertex cover in parameterized algorithmics. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4_21

    Chapter  MATH  Google Scholar 

  14. Gimbel, J.G., Hartman, C.: Subcolorings and the subchromatic number of a graph. Disc. Math. 272(2–3), 139–154 (2003). https://doi.org/10.1016/S0012-365X(03)00177-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Gudmundsson, B.A., Magnússon, T.K., Sæmundsson, B.O.: Bounds and fixed-parameter algorithms for weighted improper coloring. In: Crescenzi, P., Loreti, M. (eds.) Proceedings of the 16th Italian Conference on Theoretical Computer Science, ICTCS 2015, Firenze, Italy, 9–11 September 2015. Electronic Notes in Theoretical Computer Science, vol. 322, pp. 181–195. Elsevier (2015). https://doi.org/10.1016/j.entcs.2016.03.013

  16. Andrews, J.A., Jacobson, M.S.: On a generalization of chromatic number. Congressus Numerantium 47, 33–48 (1985)

    MathSciNet  MATH  Google Scholar 

  17. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983). https://doi.org/10.1287/moor.8.4.538

  18. Kang, R.J., McDiarmid, C.: The t-improper chromatic number of random graphs. Comb. Probab. Comput. 19(1), 87–98 (2010). https://doi.org/10.1017/S0963548309990216

    Article  MathSciNet  MATH  Google Scholar 

  19. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987). https://doi.org/10.1287/moor.12.3.415

    Article  MathSciNet  MATH  Google Scholar 

  20. Lampis, M., Vasilakis, M.: Structural parameterizations for two bounded degree problems revisited. In: Gørtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, Amsterdam, The Netherlands, 4–6 September 2023. LIPIcs, vol. 274, pp. 77:1–77:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.ESA.2023.77

  21. de Mendez, P.O., Oum, S., Wood, D.R.: Defective colouring of graphs excluding a subgraph or minor. Comb. 39(2), 377–410 (2019). https://doi.org/10.1007/S00493-018-3733-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We are grateful to the reviewers of SWAT whose suggestions helped us improve the result in Sect. 4 and the presentation of the algorithm in Theorem 1. We are also grateful to the reviewers of SOFSEM for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Bhyravarapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhyravarapu, S., Kumar, P., Saurabh, S. (2025). On the Structural Parameterized Complexity of Defective Coloring. In: Královič, R., Kůrková, V. (eds) SOFSEM 2025: Theory and Practice of Computer Science. SOFSEM 2025. Lecture Notes in Computer Science, vol 15538. Springer, Cham. https://doi.org/10.1007/978-3-031-82670-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82670-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82669-6

  • Online ISBN: 978-3-031-82670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics