Abstract
Managing quantum variables in quantum programs presents specific challenges due to the possible occurrence of entanglement, the quantum mechanical phenomenon for which two variables can reach a state where they cannot be separated into two distinct individual states. Such a phenomenon may lead to critical issues due to unintended measurements, which may alter the outcome of computations involving entangled variables. To address this problem, we propose a static analysis based on the abstract interpretation framework to soundly and automatically detect entanglement occurring in quantum programs. By constructing an abstract domain for the entanglement property, our analysis identifies cases where side effects from quantum operations may produce unwanted entanglement, thus reducing the possibility of unintended computational side effects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Danny Greenberg, Mike Horne, and Anton Zeilinger experimentally created this three-particle entanglement showing that quantum mechanics is not compatible with Einstein’s theory of ‘hidden variables’.
- 2.
We refer here to the Hilbert space vector norm defined as \(\Vert \left| {\psi }\right\rangle \Vert = \sqrt{\langle \psi \rangle }\), where \(\left\langle {\psi }\right| \) is the conjugate transpose of \(\left| {\psi }\right\rangle \) and \(\langle x\rangle {y}\) is the inner product between vector \(\left| {x}\right\rangle \) and vector \(\left| {y}\right\rangle \).
- 3.
In [2] we call the direct inseparability property as being at the same level.
- 4.
The following GitHub repository NicolaAssolini98/EntaglementAnalysis contains our prototype implemented in Python.
References
Aleksandrowicz, G., et al.: Qiskit: an Open-source Framework for Quantum Computing (Jan 2019). https://doi.org/10.5281/zenodo.2562111
Assolini, N., Di Pierro, A., Mastroeni, I.: Abstracting entanglement. In: Proceedings of the 10th ACM SIGPLAN International Workshop on Numerical and Symbolic Abstract Domains (NSAD 2024) (2024). https://doi.org/10.1145/3689609.3689998
Assolini, N., Di Pierro, A., Mastroeni, I.: Static analysis of quantum programs. In: Static Analysis: 31th International Symposium, SAS 2024, Pasadena, USA, 20-22 October 2024. Proceedings. Springer (2024)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992). https://doi.org/10.1103/PhysRevLett.69.2881, https://link.aps.org/doi/10.1103/PhysRevLett.69.2881
Boykin, P., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: A new universal and fault-tolerant quantum basis. Inform. Process. Lett. 75(3), 101–107 (2000). https://doi.org/10.1016/S0020-0190(00)00084-3, https://www.sciencedirect.com/science/article/pii/S0020019000000843
Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: A correctness and incorrectness program logic. J. ACM 70(2) (2023). https://doi.org/10.1145/3582267
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL 1977, pp. 238-252. Association for Computing Machinery, New York (1977). https://doi.org/10.1145/512950.512973, https://doi.org/10.1145/512950.512973
Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages. p. 269-282. POPL ’79, Association for Computing Machinery, New York, NY, USA (1979). https://doi.org/10.1145/567752.567778, https://doi.org/10.1145/567752.567778
Deutsch, D., Penrose, R.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. Royal Soc. London. A. Mathe. Phys. Sci. 400(1818), 97–117 (1985). https://doi.org/10.1098/rspa.1985.0070, https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1985.0070
Di Pierro, A., Mancini, S., Memarzadeh, L., Mengoni, R.: Homological analysis of multi-qubit entanglement. Europhy. Lett. 123(3), 30006 (2018). https://doi.org/10.1209/0295-5075/123/30006
Feng, Y., Li, S.: Abstract interpretation, Hoare logic, and incorrectness logic for quantum programs. Inform. Comput. 294, 105077 (2023). https://doi.org/10.1016/j.ic.2023.105077, https://www.sciencedirect.com/science/article/pii/S0890540123000809
Ferrara, P., Negrini, L., Arceri, V., Cortesi, A.: Static analysis for dummies: experiencing LiSA. In: Proceedings of the 10th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis, pp. 1-6. SOAP 2021. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3460946.3464316
Fürntratt, H., Schnabl, P., Krebs, F., Unterberger, R., Zeiner, H.: Towards higher abstraction levels in quantum computing. In: International Conference on Service-Oriented Computing, pp. 162–173. Springer (2023). https://doi.org/10.1007/978-981-97-0989-2_13
Gottesman, D.: The heisenberg representation of quantum computers. arXiv preprint quant-ph/9807006 (1998)
Green, A.S., Lumsdaine, P.L.F., Ross, N.J., Selinger, P., Valiron, B.: An introduction to quantum programming in quipper. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 110–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38986-3_10
Guo, J., et al.: isq: an integrated software stack for quantum programming. IEEE Trans. Quantum Eng. 4, 1–16 (2023). https://doi.org/10.1109/TQE.2023.3275868
Heim, B., et al.: Quantum programming languages. Nat. Rev. Phys. 2(12), 709–722 (2020). https://doi.org/10.1038/s42254-020-00245-7
Honda, K.: Analysis of quantum entanglement in quantum programs using stabilizer formalism. arXiv preprint arXiv:1511.01572 (2015)
JavadiAbhari, A., et al.: Scaffcc: a framework for compilation and analysis of quantum computing programs. In: Proceedings of the 11th ACM Conference on Computing Frontiers, CF 2014, Association for Computing Machinery, New York(2014). https://doi.org/10.1145/2597917.2597939
Kaye, P., Laflamme, R., Mosca, M.: An introduction to quantum computing. OUP Oxford (2006)
Khedker, U.P., Sanyal, A., Sathe, B.: Data Flow Analysis: Theory and Practice. CRC Press, 1st edn. (2009). https://doi.org/10.1201/9780849332517
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press (2010)
O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL) (2019). https://doi.org/10.1145/3371078
Paykin, J., Rand, R., Zdancewic, S.: Qwire: a core language for quantum circuits. SIGPLAN Not. 52(1), 846–858 (2017). https://doi.org/10.1145/3093333.3009894
Peng, Y., Ying, M., Wu, X.: Algebraic reasoning of quantum programs via non-idempotent kleene algebra. In: Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2022, pp. 657-670. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3519939.3523713, https://doi.org/10.1145/3519939.3523713
Perdrix, S.: Quantum patterns and types for entanglement and separability. Electr. Notes Theoret. Comput. Sci. 170, 125–138 (2007). https://doi.org/10.1016/j.entcs.2006.12.015, https://www.sciencedirect.com/science/article/pii/S157106610700059X, proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005)
Perdrix, S.: Quantum entanglement analysis based on abstract interpretation. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 270–282. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69166-2_18
Quantinuum: guppylang (2024). https://github.com/CQCL/guppylang
Rand, R., Sundaram, A., Singhal, K., Lackey, B.: Extending gottesman types beyond the clifford group. In: The Second International Workshop on Programming Languages for Quantum Computing (PLanQC 2021) (2021)
Rand, R., Sundaram, A., Singhal, K., Lackey, B.: Gottesman types for quantum programs. arXiv preprint arXiv:2109.02197 (2021)
Seidel, R., et al.: Qrisp: A framework for compilable high-level programming of gate-based quantum computers (2024). https://arxiv.org/abs/2406.14792
Seidl, H., Wilhelm, R., Hack, S.: Compiler Design: Analysis and Transformation. Springer (2012)
Vidal, G.: Entanglement monotones. J. Mod. Optics 47(2-3), 355–376 (2000). https://doi.org/10.1080/09500340008244048, https://www.tandfonline.com/doi/abs/10.1080/09500340008244048
Ward, M.: The closure operators of a lattice. Annals Math. 43(2), 191–196 (1942). https://doi.org/10.2307/1968865, http://www.jstor.org/stable/1968865
Winskel, G.: The formal semantics of programming languages: an introduction. MIT press (1993)
Ying, M.: Floyd–hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. 33(6) (2012). https://doi.org/10.1145/2049706.2049708
Ying, M.: Foundations of quantum programming. Morgan Kaufmann (2016)
Yu, N., Palsberg, J.: Quantum abstract interpretation. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2021, pp. 542-558. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3453483.3454061, https://doi.org/10.1145/3453483.3454061
Yuan, C., McNally, C., Carbin, M.: Twist: sound reasoning for purity and entanglement in quantum programs. Proc. ACM Program. Lang. 6(POPL) (2022). https://doi.org/10.1145/3498691
Acknowledgment
Alessandra Di Pierro was supported by INdAM - GNCS Project CUP_E53C22001930001, Isabella Mastroeni by the project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU and by PRIN2022PNRR “RAP-ARA” (PE6) - MUR: P2022HXNSC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Assolini, N., Di Pierro, A., Mastroeni, I. (2025). A Static Analysis of Entanglement. In: Shankaranarayanan, K., Sankaranarayanan, S., Trivedi, A. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2025. Lecture Notes in Computer Science, vol 15530. Springer, Cham. https://doi.org/10.1007/978-3-031-82703-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-82703-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82702-0
Online ISBN: 978-3-031-82703-7
eBook Packages: Computer ScienceComputer Science (R0)