Abstract
Despite the advances in probabilistic model checking, the scalability of the verification methods remains limited. In particular, the state space often becomes extremely large when instantiating parameterized Markov decision processes (MDPs) even with moderate values. Synthesizing policies for such huge MDPs is beyond the reach of available tools. We propose a learning-based approach to obtain a reasonable policy for such huge MDPs.
The idea is to generalize optimal policies obtained by model-checking small instances to larger ones using decision-tree learning. Consequently, our method bypasses the need for explicit state-space exploration of large models, providing a practical solution to the state-space explosion problem. We demonstrate the efficacy of our approach by performing extensive experimentation on the relevant models from the quantitative verification benchmark set. The experimental results indicate that our policies perform well, even when the size of the model is orders of magnitude beyond the reach of state-of-the-art analysis tools.
This research was funded in part by the DFG project 427755713 GOPro, the DFG GRK 2428 (ConVeY), the MUNI Award in Science and Humanities (MUNI/I/1757/2021) of the Grant Agency of Masaryk University, and the EU under MSCA grant agreement 101034413 (IST-BRIDGE).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The nature of our generalization-based policy synthesis is also portrayed by our quipping title “1–2–3–Go!”: Find out what works for cases 1, 2, and 3, then “Go!” and apply it for arbitrary large values of the parameters.
- 2.
Axis-aligned predicates are of the form \(x > c\) where x is a state variable and \(c\in \mathbb {R}\). One can also consider DTs with richer predicates in the decision nodes.
References
Ashok, P., Jackermeier, M., Jagtap, P., Kretínský, J., Weininger, M., Zamani, M.: dtControl: decision tree learning algorithms for controller representation. In: Ames, A.D., Seshia, S.A., Deshmukh, J. (eds.) HSCC ’20: 23rd ACM International Conference on Hybrid Systems: Computation and Control, Sydney, New South Wales, Australia, April 21–24, 2020, pp. 30:1–30:2. ACM (2020). https://doi.org/10.1145/3365365.3383468
Ashok, P., Jackermeier, M., Kretínský, J., Weinhuber, C., Weininger, M., Yadav, M.: dtControl 2.0: explainable strategy representation via decision tree learning steered by experts. In: TACAS (2). Lecture Notes in Computer Science, vol. 12652, pp. 326–345. Springer (2021)
Ashok, P., Křetínský, J., Weininger, M.: PAC statistical model checking for Markov decision processes and stochastic games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 497–519. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_29
Azeem, M., Chakraborty, D., Kanav, S., Kretínský, J., Mohagheghi, M., Mohr, S., Weininger, M.: 1-2-3-Go! policy synthesis for parameterized Markov decision processes via decision-tree learning and generalization. CoRR abs/2410.18293 (2024). https://arxiv.org/abs/2410.18293
Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reliability of your model checker: interval iteration for Markov decision processes. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_8
Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solutions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019). https://doi.org/10.1007/s10009-017-0469-y
Brázdil, T., Chatterjee, K., Chmelík, M., Fellner, A., Křetínský, J.: Counterexample explanation by learning small strategies in Markov decision processes. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 158–177. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_10
Brázdil, T., et al.: Verification of Markov decision processes using learning algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8
Breiman, L.: Classification and Regression Trees. The Wadsworth statistics / probability series), Wadsworth International Group (1984)
Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_20
Budde, C.E., et al.: On correctness, precision, and performance in quantitative verification - QComp 2020 competition report. In: ISoLA (4). Lecture Notes in Computer Science, vol. 12479, pp. 216–241. Springer (2020)
Ciesinski, F., Baier, C., Größer, M., Klein, J.: Reduction techniques for model checking markov decision processes. In: QEST, pp. 45–54. IEEE Computer Society (2008)
Curtin, R.R., Edel, M., Lozhnikov, M., Mentekidis, Y., Ghaisas, S., Zhang, S.: mlpack 3: a fast, flexible machine learning library. J. Open Source Softw. 3(26), 726 (2018)
D’Argenio, P.R., Legay, A., Sedwards, S., Traonouez, L.: Smart sampling for lightweight verification of Markov decision processes. Int. J. Softw. Tools Technol. Transf. 17(4), 469–484 (2015)
Feng, L.: On learning assumptions for compositional verification of probabilistic systems. Ph.D. thesis, University of Oxford, UK (2014)
Feng, L., Kwiatkowska, M., Parker, D.: Automated learning of probabilistic assumptions for compositional reasoning. In: Giannakopoulou, D., Orejas, F. (eds.) Fundamental Approaches to Software Engineering, pp. 2–17. Springer, Heidelberg (2011)
Groote, J.F., Verduzco, J.R., de Vink, E.P.: An efficient algorithm to determine probabilistic bisimulation. Algorithms 11(9), 131 (2018)
Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep statistical model checking. In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 96–114. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50086-3_6
Größer, M., Baier, C.: Partial order reduction for Markov decision processes: a survey. In: FMCO. Lecture Notes in Computer Science, vol. 4111, pp. 408–427. Springer (2005)
Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 125–137. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11439-2_10
Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-regular objectives in model-free reinforcement learning. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 395–412. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_27
Hartmanns, A.: MODEST - A unified language for quantitative models. In: FDL, pp. 44–51. IEEE (2012). https://ieeexplore.ieee.org/document/6336982/
Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using partitioning and secondary storage. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) Automated Technology for Verification and Analysis - 13th International Symposium, ATVA 2015, Shanghai, China, October 12–15, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9364, pp. 131–147. Springer (2015). https://doi.org/10.1007/978-3-319-24953-7_10
Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantitative verification benchmark set. In: TACAS (1). Lecture Notes in Computer Science, vol. 11427, pp. 344–350. Springer (2019).https://doi.org/10.1007/978-3-030-17462-0_20
Hartmanns, A., Timmer, M.: Sound statistical model checking for MDP using partial order and confluence reduction. Int. J. Softw. Tools Technol. Transf. 17(4), 429–456 (2015)
Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical model checking for Markov decision processes. In: QEST. pp. 84–93. IEEE Computer Society (2012)
Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic model checker storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022). https://doi.org/10.1007/s10009-021-00633-z
Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is np-complete. Inf. Process. Lett. 5(1), 15–17 (1976). https://doi.org/10.1016/0020-0190(76)90095-8
Kamaleson, N.: Model reduction techniques for probabilistic verification of Markov chains. Ph.D. thesis, University of Birmingham, UK (2018)
Klein, J., et al.: Advances in probabilistic model checking with PRISM: variable reordering, quantiles and weak deterministic büchi automata. Int. J. Softw. Tools Technol. Transf. 20(2), 179–194 (2018)
Křetínský, J.: Survey of statistical verification of linear unbounded properties: model checking and distances. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 27–45. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_3
Kretínský, J., Meggendorfer, T.: Of cores: a partial-exploration framework for Markov decision processes. Log. Methods Comput. Sci. 16(4) (2020)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46029-2_13
Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based abstraction for Markov decision processes. In: QEST, pp. 157–166. IEEE Computer Society (2006)
Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_23
Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In: QEST, pp. 203–204. IEEE Computer Society (2012). https://doi.org/10.1109/QEST.2012.14
Kwiatkowska, M.Z., Parker, D., Qu, H.: Incremental quantitative verification for markov decision processes. In: DSN, pp. 359–370. IEEE Compute Society (2011)
Li, R., Liu, Y.: Compositional stochastic model checking probabilistic automata via symmetric assume-guarantee rule. In: 2019 IEEE 17th International Conference on Software Engineering Research, Management and Applications (SERA), pp. 110–115. IEEE (2019)
Lomuscio, A., Pirovano, E.: A counter abstraction technique for the verification of probabilistic swarm systems. In: AAMAS, pp. 161–169. International Foundation for Autonomous Agents and Multiagent Systems (2019)
Maisonneuve, V.: Automatic heuristic-based generation of MTBDD variable orderings for prism models. internship report (2009)
Mitchell, T.: Machine Learning, vol. 1. McGraw-Hill, New York (1997)
Mohagheghi, M., Salehi, K.: Machine learning and disk-based methods for qualitative verification of Markov decision processes. In: ICTERI Workshops. CEUR Workshop Proceedings, vol. 2732, pp. 74–88. CEUR-WS.org (2020)
Parker, D.A.: Implementation of symbolic model checking for probabilistic systems. Ph.D. thesis, University of Birmingham, UK (2003)
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.org/10.1002/9780470316887
Pyeatt, L.D., Howe, A.E.: Decision tree function approximation in reinforcement learning (1999)
Rataj, A., Wozna-Szczesniak, B.: Extrapolation of an optimal policy using statistical probabilistic model checking. Fundam. Informaticae 157(4), 443–461 (2018)
Shannon, C.E.: A mathematical theory of communication. The Bell system technical journal 27(3), 379–423 (1948)
Smolka, S., et al.: Scalable verification of probabilistic networks. In: PLDI, pp. 190–203. ACM (2019)
Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. Cambridge, MA, USA (1998)
Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L\( ^{\text{*}}\)-based learning of Markov decision processes. In: FM. Lecture Notes in Computer Science, vol. 11800, pp. 651–669. Springer (2019)
Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_17
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Azeem, M. et al. (2025). 1–2–3–Go! Policy Synthesis for Parameterized Markov Decision Processes via Decision-Tree Learning and Generalization. In: Shankaranarayanan, K., Sankaranarayanan, S., Trivedi, A. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2025. Lecture Notes in Computer Science, vol 15530. Springer, Cham. https://doi.org/10.1007/978-3-031-82703-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-82703-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82702-0
Online ISBN: 978-3-031-82703-7
eBook Packages: Computer ScienceComputer Science (R0)