Skip to main content

Verification of the Socio-Technical Aspects of Voting: The Case of the Polish Postal Vote 2020

  • Conference paper
  • First Online:
Socio-Technical Aspects in Security (STAST 2022)

Abstract

Voting procedures are designed and implemented by people, for people, and with significant human involvement. Thus, one should take into account the human factors in order to comprehensively analyze properties of an election and detect threats. In particular, it is essential to assess how actions and strategies of the involved agents (voters, municipal office employees, mail clerks) can influence the outcome of other agents’ actions as well as the overall outcome of the election. In this paper, we present our first attempt to capture those aspects in a formal multi-agent model of the Polish presidential election 2020. The election marked the first time when postal vote was universally available in Poland. Unfortunately, the voting scheme was prepared under time pressure and political pressure, and without the involvement of experts. This might have opened up possibilities for various kinds of ballot fraud, in-house coercion, etc. We propose a preliminary scalable model of the procedure in the form of a Multi-Agent Graph, and formalize selected integrity and security properties by formulas of agent logics. Then, we transform the models and formulas so that they can be input to the state-of-art model checker Uppaal. The first series of experiments demonstrates that verification scales rather badly due to the state-space explosion. However, we show that a recently developed technique of user-friendly model reduction by variable abstraction allows us to verify more complex scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Uppaal, system components are defined together with their graph-like (local) representation, which could greatly facilitate in reducing the number of bugs/errors, improve understanding and presentation of the model, and provide more confidence that we know what we are modelling and if it is actually what wanted to model.

  2. 2.

    Its template consists of a single location with multiple self-loop edges; the figure was omitted due to space constraints.

  3. 3.

    It is worth noting that having a modular representation allows extending the model with other types of agents, including adversary, if needed.

  4. 4.

    Authors would want to stress out that the given properties are just an example, merely for illustration purpose, and they should not be viewed as complete list of requirements.

  5. 5.

    The satisfaction of CTL operators in a transition system is interpreted over maximal runs, i.e., ones that are either infinite or end in a state with no outgoing transitions. In contrast, Uppaal looks at all finite runs. While this does not change the semantics of and , the interpretation of both and becomes nonstandard.

References

  1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49, 672–713 (2002). https://doi.org/10.1145/585265.585270

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrzej Rzepliński, M.S.: Statement on election irregularities [polish: Oświadczenia w sprawie nieprawidłowości dotyczących wyborów]. https://ow.org.pl/2020/08/05/oswiadczenia-w-sprawie-nieprawidlowosci-dotyczacych-wyborow/

  3. Arapinis, M., Cortier, V., Kremer, S.: When are three voters enough for privacy properties? In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 241–260. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3_13

    Chapter  MATH  Google Scholar 

  4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  5. Basin, D., Gersbach, H., Mamageishvili, A., Schmid, L., Tejada, O.: Election security and economics: it’s all about eve. In: Krimmer, R., Volkamer, M., Braun Binder, N., Kersting, N., Pereira, O., Schürmann, C. (eds.) E-Vote-ID 2017. LNCS, vol. 10615, pp. 1–20. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68687-5_1

    Chapter  MATH  Google Scholar 

  6. Basin, D.A., Radomirovic, S., Schmid, L.: Modeling human errors in security protocols. In: Computer Security Foundations Symposium, CSF, pp. 325–340. IEEE Computer Society (2016). https://doi.org/10.1109/CSF.2016.30

  7. Beckert, B., Beuster, G.: A method for formalizing, analyzing, and verifying secure user interfaces. In: International Conference on Formal Engineering Methods, pp. 55–73. Springer, Cham (2006)

    Google Scholar 

  8. Behrmann, G., David, A., Larsen, K.: A tutorial on uppaal. In: Formal Methods for the Design of Real-Time Systems: SFM-RT. LNCS, pp. 200–236, vol. 3185. Springer, Cham (2004)

    Google Scholar 

  9. Bella, G., Curzon, P., Giustolisi, R., Lenzini, G.: A socio-technical methodology for the security and privacy analysis of services. In: COMPSAC Workshops, pp. 401–406. IEEE Computer Society (2014). https://doi.org/10.1109/COMPSACW.2014.69

  10. Bella, G., Curzon, P., Lenzini, G.: Service security and privacy as a socio-technical problem. J. Comput. Secur. 23(5), 563–585 (2015). https://doi.org/10.3233/JCS-150536

    Article  MATH  Google Scholar 

  11. Bella, G., Giustolisi, R., Schürmann, C.: Modelling human threats in security ceremonies. J. Comput. Secur. (Preprint) 1–23 (2022)

    Google Scholar 

  12. Benaloh, J., Ryan, P.Y., Teague, V.: Verifiable postal voting. In: Cambridge International Workshop on Security Protocols, pp. 54–65. Springer, Cham (2013)

    Google Scholar 

  13. Blanchet, B., et al.: Modeling and verifying security protocols with the applied pi calculus and proverif. Found. Trends® Privacy Secur. 1(1-2), 1–135 (2016)

    Google Scholar 

  14. Bruni, A., Drewsen, E., Schürmann, C.: Towards a mechanized proof of Selene receipt-freeness and vote-privacy. In: Krimmer, R., Volkamer, M., Braun Binder, N., Kersting, N., Pereira, O., Schürmann, C. (eds.) E-Vote-ID 2017. LNCS, vol. 10615, pp. 110–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68687-5_7

    Chapter  MATH  Google Scholar 

  15. Bruni, A., Carbone, M., Giustolisi, R., Mödersheim, S., Schürmann, C.: Security protocols as choreographies. In: Dougherty, D., Meseguer, J., Mödersheim, S.A., Rowe, P. (eds.) Protocols, Strands, and Logic. LNCS, vol. 13066, pp. 98–111. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91631-2_5

    Chapter  MATH  Google Scholar 

  16. Buldas, A., Mägi, T.: Practical security analysis of e-voting systems. In: Proceedings of IWSEC. LNCS, vol. 4752, pp. 320–335. Springer, Cham (2007)

    Google Scholar 

  17. Carlos, M.C., Martina, J.E., Price, G., Custódio, R.F.: A proposed framework for analysing security ceremonies. In: SECRYPT, pp. 440–445. SciTePress (2012)

    Google Scholar 

  18. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Handbook of model checking, vol. 10. Springer, Cham (2018)

    Google Scholar 

  19. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

    Article  MATH  Google Scholar 

  20. Cortier, V., Filipiak, A., Lallemand, J.: Beleniosvs: secrecy and verifiability against a corrupted voting device. In: 2019 IEEE 32nd Computer Security Foundations Symposium (CSF), pp. 367–36714. IEEE (2019)

    Google Scholar 

  21. Cortier, V., Galindo, D., Turuani, M.: A formal analysis of the neuchâtel e-voting protocol. In: 2018 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 430–442. IEEE (2018)

    Google Scholar 

  22. Dastani, M., Hindriks, K., Meyer, J. (eds.): Specification and Verification of Multi-Agent Systems. Springer, Cham (2010)

    MATH  Google Scholar 

  23. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier (1990)

    Google Scholar 

  24. Fakt.pl: Ballot papers without stamp were delivered. Will the votes be invalid? [Polish: Dostali karty do głosowania bez pieczęci. Czy głosy będą nieważne?]. https://www.fakt.pl/wydarzenia/polityka/dostali-karty-do-glosowania-bez-pieczeci-czy-glosy-beda-niewazne/6cwhzg4

  25. Haines, T., Goré, R., Tiwari, M.: Verified verifiers for verifying elections. In: Proceedings of CCS, pp. 685–702. ACM (2019). https://doi.org/10.1145/3319535.3354247

  26. Haines, T., Goré, R., Sharma, B.: Did you mix me? Formally verifying verifiable mix nets in electronic voting. In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24–27 May 2021, pp. 1748–1765. IEEE (2021). https://doi.org/10.1109/SP40001.2021.00033

  27. Hao, F., Ryan, P.: Real-World Electronic Voting: Design, Analysis and Deployment. Auerbach Publications (2016)

    Google Scholar 

  28. Holroyd, M.: Dutch election: rule change to accept wrongly sealed mail-in ballots. Euronews (2021). https://www.euronews.com/2021/03/17/dutch-election-rule-change-to-accept-wrongly-sealed-mail-in-ballots

  29. Jamroga, W., Knapik, M., Kurpiewski, D.: Model checking the SELENE e-voting protocol in multi-agent logics. In: Proceedings of the 3rd International Joint Conference on Electronic Voting (E-VOTE-ID). LNCS, vol. 11143, pp. 100–116. Springer, Cham (2018)

    Google Scholar 

  30. Jamroga, W., Tabatabaei, M.: Preventing coercion in e-voting: be open and commit. In: Krimmer, R., et al. (eds.) E-Vote-ID 2016. LNCS, vol. 10141, pp. 1–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52240-1_1

    Chapter  MATH  Google Scholar 

  31. Jamroga, W., Kim, Y.: Practical abstraction for model checking of multi-agent systems (2022). https://doi.org/10.48550/ARXIV.2202.12016

  32. Jamroga, W., Kim, Y., Kurpiewski, D., Ryan, P.Y.A.: Towards model checking of voting protocols in Uppaal. In: Krimmer, R., et al. (eds.) E-Vote-ID 2020. LNCS, vol. 12455, pp. 129–146. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60347-2_9

    Chapter  MATH  Google Scholar 

  33. Jamroga, W., Kurpiewski, D., Malvone, V.: Natural strategic abilities in voting protocols. In: Proceedings of STAST 2020 (2021, to appear)

    Google Scholar 

  34. Jamroga, W., Mestel, D., Roenne, P.B., Ryan, P.Y.A., Skrobot, M.: A survey of requirements for COVID-19 mitigation strategies. Bull. Polish Acad. Sci. Tech. Sci. 69(4), e137724 (2021). https://doi.org/10.24425/bpasts.2021.137724

  35. Killer, C., Stiller, B.: The swiss postal voting process and its system and security analysis. In: International Joint Conference on Electronic Voting, pp. 134–149. Springer, Cham (2019)

    Google Scholar 

  36. Kurpiewski, D., Jamroga, W., Knapik, M.L.: STV: model checking for strategies under imperfect information. In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019, pp. 2372–2374. IFAAMAS (2019)

    Google Scholar 

  37. Kurpiewski, D., Pazderski, W., Jamroga, W., Kim, Y.: STV+Reductions: towards practical verification of strategic ability using model reductions. In: Proceedings of AAMAS, pp. 1770–1772. ACM (2021)

    Google Scholar 

  38. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transfer 19(1), 9–30 (2017). https://doi.org/10.1007/s10009-015-0378-x

    Article  MATH  Google Scholar 

  39. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transfer 19(1), 9–30 (2017)

    Article  MATH  Google Scholar 

  40. Martimiano, T., Santos, E.D., Olembo, M., Martina, J.: Ceremony analysis meets verifiable voting: individual verifiability in Helios. In: SECURWARE (2015)

    Google Scholar 

  41. McMillan, K.: Symbolic Model Checking: An Approach to the State Explosion Problem. Kluwer Academic Publishers (1993)

    Google Scholar 

  42. McMillan, K.: Applying SAT methods in unbounded symbolic model checking. In: Proceedings of Computer Aided Verification (CAV). LNCS, vol. 2404, pp. 250–264 (2002)

    Google Scholar 

  43. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The tamarin prover for the symbolic analysis of security protocols. In: International Conference on Computer Aided Verification, pp. 696–701. Springer, Cham (2013)

    Google Scholar 

  44. Meng, B.: A critical review of receipt-freeness and coercion-resistance. Inf. Technol. J. 8(7), 934–964 (2009)

    Article  MATH  Google Scholar 

  45. National Electoral Commission [Polish: Państwowa Komisja Wyborcza]: Presidential election 2020. [Polish: Wybory Prezydenta Rzeczypospolitej Polskiej 2020 r] (2020). https://prezydent20200628.pkw.gov.pl/prezydent20200628/pl

  46. Pattinson, D., Schürmann, C.: Vote counting as mathematical proof. In: Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 464–475. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26350-2_41

    Chapter  MATH  Google Scholar 

  47. Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7_34

    Chapter  MATH  Google Scholar 

  48. of the Republic of Poland, S.: Internet Legal Acts System [Polish: Internetowy System Aktów Prawnych] (2022). https://isap.sejm.gov.pl/isap.nsf/search.xsp?status=O&kw=wybory

  49. Sempreboni, D., Vigano, L.: X-men: a mutation-based approach for the formal analysis of security ceremonies. In: 2020 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 87–104. IEEE (2020)

    Google Scholar 

  50. Shoham, Y., Leyton-Brown, K.: Multiagent Systems - Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press (2009)

    Google Scholar 

  51. Skubiszewski, M.: Electoral Observatory to the President of the NEC: Incorrectly printed ballots abroad - need to address the problem [Polish: Obserwatorium Wyborcze do Przewodniczącego PKW: Nieprawidłowo wydrukowane karty do głosowania za granicą - konieczność rozwiązania problemu]. https://monitorkonstytucyjny.eu/archiwa/14355

  52. Spotted-Lublin: Election 2020 ballot papers without red DEC seal [Polish: Wybory 2020. Karty do głosowania bez czerwonej pieczęci obwodowej komisji wyborczej]. https://spottedlublin.pl/wybory-2020-karty-do-glosowania-bez-czerwonej-pieczeci-obwodowej-komisji-wyborczej/

  53. Tabatabaei, M., Jamroga, W., Ryan, P.Y.A.: Expressing receipt-freeness and coercion-resistance in logics of strategic ability: Preliminary attempt. In: Proceedings of the 1st International Workshop on AI for Privacy and Security, PrAISe@ECAI 2016, pp. 1:1–1:8. ACM (2016). https://doi.org/10.1145/2970030.2970039

Download references

Acknowledgements

The work was supported by NCBR Poland and FNR Luxembourg under the PolLux/FNR-CORE project STV (POLLUX-VII/1/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Jamroga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, Y., Jamroga, W., Ryan, P.Y.A. (2025). Verification of the Socio-Technical Aspects of Voting: The Case of the Polish Postal Vote 2020. In: Mehrnezhad, M., Parkin, S. (eds) Socio-Technical Aspects in Security. STAST 2022. Lecture Notes in Computer Science, vol 13855. Springer, Cham. https://doi.org/10.1007/978-3-031-83072-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83072-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83071-6

  • Online ISBN: 978-3-031-83072-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics