Abstract
Building on the first part of this work in the area of smart home monitoring, this second part presents a case study of the comprehensive architecture designed to identify anomalous events and issue alerts in smart home environments. Leveraging advances in artificial intelligence and heterogeneous data sources, the architecture addresses the critical need for real-time monitoring and response systems, particularly for vulnerable individuals such as the elderly living alone. The architecture includes various components, including data input handlers, event recognizers, analyzers, and communication channels, to provide a holistic home monitoring solution. To validate the adaptability and robustness of the architecture, the actions of an elderly person in their daily home life and potential events requiring attention when living alone are considered, focusing on scenarios involving potential health emergencies and unusual activities. The evaluation of the architecture spans different hardware configurations, demonstrating its scalability, stability, and efficient response times in different environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)
Costa, A., Rincon, J.A., Carrascosa, C., Julian, V., Novais, P.: Emotions detection on an ambient intelligent system using wearable devices. Futur. Gener. Comput. Syst. 92, 479–489 (2019). https://doi.org/10.1016/j.future.2018.03.038
Dall’Asta, L., Egger, G.: Human action detection, classification and monitoring based on micro-doppler processing for avoidance of work accidents. In: Novais, P., Carneiro, J., Chamoso, P. (eds.) Ambient Intelligence - Software and Applications - 12th International Symposium on Ambient Intelligence, pp. 81–91. Springer (2021). https://doi.org/10.1007/978-3-031-06894-2_8
Fei, X., Tian, G.: Optimization of communication network fault identification based on NB-IoT. Microprocess. Microsyst. 80, 103531 (2021). https://doi.org/10.1016/j.micpro.2020.103531
Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A.: Improvement of the elderly quality of life and care through smart emotion regulation. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) Ambient Assisted Living and Daily Activities, pp. 348–355. Springer, Cham (2014)
Fernández-Caballero, A., et al.: Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 64, 55–73 (2016). https://doi.org/10.1016/j.jbi.2016.09.015
Fernández-Caballero, A., Castillo, J.C., López, M.T., Serrano-Cuerda, J., Sokolova, M.V.: INT3-horus framework for multispectrum activity interpretation in intelligent environments. Expert Syst. Appl. 40(17), 6715–6727 (2013). https://doi.org/10.1016/j.eswa.2013.06.058
Google Inc.: Google Colab. https://colab.research.google.com/
Górriz, J., Álvarez Illán, I., Alvarez-Marquina, A., et. al: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fusion 100, 101945 (2023)
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2017, pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322
Jiménez-Ruescas, J., Sánchez, R., Maya, Y., Fernández-Caballero, A., García, A.S., González, P.: A framework for managing the experimental evaluation of ambient assisted living systems. In: Bravo, J., Urzáiz, G. (eds.) Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence, pp. 124–135. Springer, Cham (2023)
Kushwah, R., Batra, P.K., Jain, A.: Internet of things architectural elements, challenges and future directions. In: Proceedings of the 6th International Conference on Signal Processing and Communication, pp. 1–5. IEEE (2020)
Liciotti, D., Bernardini, M., Romeo, L., Frontoni, E.: A sequential deep learning application for recognising human activities in smart homes. Neurocomputing 396, 501–513 (2020). https://doi.org/10.1016/j.neucom.2018.10.104
López-Jaquero, V., Montero, F., Molina, J.P., Fernández-Caballero, A., González, P.: Model-based design of adaptive user interfaces through connectors. In: Jorge, J.A., Jardim Nunes, N., Falcão e Cunha, J. (eds.) Interactive Systems. Design, Specification, and Verification, pp. 245–257. Springer, Heidelberg (2003)
López-Jaquero, V., Montero, F., Molina, J.P., González, P., Fernández-Caballero, A.: A seamless development process of adaptive user interfaces explicitly based on usability properties. In: Bastide, R., Palanque, P., Roth, J. (eds.) Engineering Human Computer Interaction and Interactive Systems, pp. 289–291. Springer, Heidelberg (2005)
Lozano-Monasor, E., López, M., Vigo-Bustos, F., Fernández-Caballero, A.: Facial expression recognition in ageing adults: from lab to ambient assisted living. J. Ambient Intell. Humaniz. Comput. 8, 567—578 (2017). https://doi.org/10.3233/IFS-2012-0548
Mrozek, D., Koczur, A., Małysiak-Mrozek, B.: Fall detection in older adults with mobile IoT devices and machine learning in the cloud and on the edge. Inf. Sci. 537, 132–147 (2020). https://doi.org/10.1016/j.ins.2020.05.070
Roda-Sanchez, L., Garrido-Hidalgo, C., Royo, F., Maté-Gómez, J.L., Olivares, T., Fernández-Caballero, A.: Cloud-edge microservices architecture and service orchestration: an integral solution for a real-world deployment experience. Internet Things 22, 100777 (2023). https://doi.org/10.1016/j.iot.2023.100777
Rojas-Albarracín, G., Chaves, M.Á., Fernández-Caballero, A., López, M.T.: Heart attack detection in colour images using convolutional neural networks. Appl. Sci. 9(23), 5065 (2019). https://doi.org/10.3390/app9235065
Shao, C., Zhang, Q., Song, Y., Zhu, D.: Smart home healthcare system based on middleware and counter neural network. J. Med. Imaging Health Inform. 10(5), 1105–1112 (2020). https://doi.org/10.1166/jmihi.2020.2894
Sokolova, M.V., Serrano-Cuerda, J., Castillo, J.C., Fernández-Caballero, A.: A fuzzy model for human fall detection in infrared video. J. Intell. Fuzzy Syst. 24(2), 215–228 (2013). https://doi.org/10.3233/IFS-2012-0548
Wilson, G., et al.: Robot-enabled support of daily activities in smart home environments. Cogn. Syst. Res. 54, 258–272 (2019). https://doi.org/10.1016/j.cogsys.2018.10.032
Yahaya, S.W., Lotfi, A., Mahmud, M.: A consensus novelty detection ensemble approach for anomaly detection in activities of daily living. Appl. Soft Comput. 83, 105613 (2019). https://doi.org/10.1016/j.asoc.2019.105613
Acknowledgments
Grant PID2023-149753OB-C21 funded by Spanish MCIU/ AEI/10.13039/5011 00011033/ERDF, EU. Grant PID2020-115220RB-C21 funded by Spanish MCIN/AEI/10.13039/501100011033 and by “ERDF A way to make Europe”. Grant 2022-GRIN-34436 funded by Universidad de Castilla-La Mancha and by “ERDF A way to make Europe”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rojas-Albarracín, G., López, M.T., Fernández-Caballero, A. (2025). Integrating Artificial Intelligence and Heterogeneous Sources in Smart Environments Part 2: A Case Study. In: Novais, P., et al. Ambient Intelligence – Software and Applications – 15th International Symposium on Ambient Intelligence. ISAmI 2024. Lecture Notes in Networks and Systems, vol 1279. Springer, Cham. https://doi.org/10.1007/978-3-031-83117-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-83117-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-83116-4
Online ISBN: 978-3-031-83117-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)