Skip to main content

Integrating Artificial Intelligence and Heterogeneous Sources in Smart Environments Part 2: A Case Study

  • Conference paper
  • First Online:
Ambient Intelligence – Software and Applications – 15th International Symposium on Ambient Intelligence (ISAmI 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1279))

Included in the following conference series:

  • 172 Accesses

Abstract

Building on the first part of this work in the area of smart home monitoring, this second part presents a case study of the comprehensive architecture designed to identify anomalous events and issue alerts in smart home environments. Leveraging advances in artificial intelligence and heterogeneous data sources, the architecture addresses the critical need for real-time monitoring and response systems, particularly for vulnerable individuals such as the elderly living alone. The architecture includes various components, including data input handlers, event recognizers, analyzers, and communication channels, to provide a holistic home monitoring solution. To validate the adaptability and robustness of the architecture, the actions of an elderly person in their daily home life and potential events requiring attention when living alone are considered, focusing on scenarios involving potential health emergencies and unusual activities. The evaluation of the architecture spans different hardware configurations, demonstrating its scalability, stability, and efficient response times in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  2. Costa, A., Rincon, J.A., Carrascosa, C., Julian, V., Novais, P.: Emotions detection on an ambient intelligent system using wearable devices. Futur. Gener. Comput. Syst. 92, 479–489 (2019). https://doi.org/10.1016/j.future.2018.03.038

    Article  Google Scholar 

  3. Dall’Asta, L., Egger, G.: Human action detection, classification and monitoring based on micro-doppler processing for avoidance of work accidents. In: Novais, P., Carneiro, J., Chamoso, P. (eds.) Ambient Intelligence - Software and Applications - 12th International Symposium on Ambient Intelligence, pp. 81–91. Springer (2021). https://doi.org/10.1007/978-3-031-06894-2_8

  4. Fei, X., Tian, G.: Optimization of communication network fault identification based on NB-IoT. Microprocess. Microsyst. 80, 103531 (2021). https://doi.org/10.1016/j.micpro.2020.103531

  5. Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A.: Improvement of the elderly quality of life and care through smart emotion regulation. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) Ambient Assisted Living and Daily Activities, pp. 348–355. Springer, Cham (2014)

    Chapter  MATH  Google Scholar 

  6. Fernández-Caballero, A., et al.: Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 64, 55–73 (2016). https://doi.org/10.1016/j.jbi.2016.09.015

  7. Fernández-Caballero, A., Castillo, J.C., López, M.T., Serrano-Cuerda, J., Sokolova, M.V.: INT3-horus framework for multispectrum activity interpretation in intelligent environments. Expert Syst. Appl. 40(17), 6715–6727 (2013). https://doi.org/10.1016/j.eswa.2013.06.058

    Article  Google Scholar 

  8. Google Inc.: Google Colab. https://colab.research.google.com/

  9. Górriz, J., Álvarez Illán, I., Alvarez-Marquina, A., et. al: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fusion 100, 101945 (2023)

    Google Scholar 

  10. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2017, pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322

  11. Jiménez-Ruescas, J., Sánchez, R., Maya, Y., Fernández-Caballero, A., García, A.S., González, P.: A framework for managing the experimental evaluation of ambient assisted living systems. In: Bravo, J., Urzáiz, G. (eds.) Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence, pp. 124–135. Springer, Cham (2023)

    Google Scholar 

  12. Kushwah, R., Batra, P.K., Jain, A.: Internet of things architectural elements, challenges and future directions. In: Proceedings of the 6th International Conference on Signal Processing and Communication, pp. 1–5. IEEE (2020)

    Google Scholar 

  13. Liciotti, D., Bernardini, M., Romeo, L., Frontoni, E.: A sequential deep learning application for recognising human activities in smart homes. Neurocomputing 396, 501–513 (2020). https://doi.org/10.1016/j.neucom.2018.10.104

    Article  MATH  Google Scholar 

  14. López-Jaquero, V., Montero, F., Molina, J.P., Fernández-Caballero, A., González, P.: Model-based design of adaptive user interfaces through connectors. In: Jorge, J.A., Jardim Nunes, N., Falcão e Cunha, J. (eds.) Interactive Systems. Design, Specification, and Verification, pp. 245–257. Springer, Heidelberg (2003)

    Google Scholar 

  15. López-Jaquero, V., Montero, F., Molina, J.P., González, P., Fernández-Caballero, A.: A seamless development process of adaptive user interfaces explicitly based on usability properties. In: Bastide, R., Palanque, P., Roth, J. (eds.) Engineering Human Computer Interaction and Interactive Systems, pp. 289–291. Springer, Heidelberg (2005)

    Chapter  MATH  Google Scholar 

  16. Lozano-Monasor, E., López, M., Vigo-Bustos, F., Fernández-Caballero, A.: Facial expression recognition in ageing adults: from lab to ambient assisted living. J. Ambient Intell. Humaniz. Comput. 8, 567—578 (2017). https://doi.org/10.3233/IFS-2012-0548

  17. Mrozek, D., Koczur, A., Małysiak-Mrozek, B.: Fall detection in older adults with mobile IoT devices and machine learning in the cloud and on the edge. Inf. Sci. 537, 132–147 (2020). https://doi.org/10.1016/j.ins.2020.05.070

    Article  MATH  Google Scholar 

  18. Roda-Sanchez, L., Garrido-Hidalgo, C., Royo, F., Maté-Gómez, J.L., Olivares, T., Fernández-Caballero, A.: Cloud-edge microservices architecture and service orchestration: an integral solution for a real-world deployment experience. Internet Things 22, 100777 (2023). https://doi.org/10.1016/j.iot.2023.100777

    Article  Google Scholar 

  19. Rojas-Albarracín, G., Chaves, M.Á., Fernández-Caballero, A., López, M.T.: Heart attack detection in colour images using convolutional neural networks. Appl. Sci. 9(23), 5065 (2019). https://doi.org/10.3390/app9235065

    Article  Google Scholar 

  20. Shao, C., Zhang, Q., Song, Y., Zhu, D.: Smart home healthcare system based on middleware and counter neural network. J. Med. Imaging Health Inform. 10(5), 1105–1112 (2020). https://doi.org/10.1166/jmihi.2020.2894

    Article  MATH  Google Scholar 

  21. Sokolova, M.V., Serrano-Cuerda, J., Castillo, J.C., Fernández-Caballero, A.: A fuzzy model for human fall detection in infrared video. J. Intell. Fuzzy Syst. 24(2), 215–228 (2013). https://doi.org/10.3233/IFS-2012-0548

    Article  MATH  Google Scholar 

  22. Wilson, G., et al.: Robot-enabled support of daily activities in smart home environments. Cogn. Syst. Res. 54, 258–272 (2019). https://doi.org/10.1016/j.cogsys.2018.10.032

  23. Yahaya, S.W., Lotfi, A., Mahmud, M.: A consensus novelty detection ensemble approach for anomaly detection in activities of daily living. Appl. Soft Comput. 83, 105613 (2019). https://doi.org/10.1016/j.asoc.2019.105613

Download references

Acknowledgments

Grant PID2023-149753OB-C21 funded by Spanish MCIU/ AEI/10.13039/5011 00011033/ERDF, EU. Grant PID2020-115220RB-C21 funded by Spanish MCIN/AEI/10.13039/501100011033 and by “ERDF A way to make Europe”. Grant 2022-GRIN-34436 funded by Universidad de Castilla-La Mancha and by “ERDF A way to make Europe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fernández-Caballero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rojas-Albarracín, G., López, M.T., Fernández-Caballero, A. (2025). Integrating Artificial Intelligence and Heterogeneous Sources in Smart Environments Part 2: A Case Study. In: Novais, P., et al. Ambient Intelligence – Software and Applications – 15th International Symposium on Ambient Intelligence. ISAmI 2024. Lecture Notes in Networks and Systems, vol 1279. Springer, Cham. https://doi.org/10.1007/978-3-031-83117-1_22

Download citation

Publish with us

Policies and ethics