Skip to main content

Data Augmentation for Improved Melanoma Classification in Convolutional Neural Networks

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2024)

Abstract

Convolutional Neural Networks (CNNs) are highly effective in various computer vision tasks. However, their performance is heavily dependent on the quality and quantity of the training data. This study aims to optimise CNN performance using pattern augmentation techniques to address the problem of limited training data in medical image analysis. Using the DenseNet architecture and the HAM10000 dataset of melanoma and non-melanoma images, the researchers applied a range of augmentation methods, including random rotation, brightness adjustment, random zoom, horizontal flip, height and width shift, and random cropping. The methodology involved evaluating the impact of these augmentation techniques on CNN training. The results showed that random crop and horizontal flip significantly improved classification accuracy by 1–2% over 30 epochs. Extending training to 50 epochs further enhanced performance, though not all methods showed significant improvements; random crop and horizontal flip remained the most effective. These findings highlight the crucial role of selecting appropriate augmentation techniques and training epochs in optimizing CNN performance. The study underscores the importance of dataset diversity and augmentation strategies, particularly in medical image analysis where early and accurate diagnosis is critical. Future research should explore different network architectures and datasets to validate and generalize these results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Biasi, L., De Marco, F., Citarella, A.A., Castrillón-Santana, M., Barra, P., Tortora, G.: Refactoring and performance analysis of the main CNN architectures: using false negative rate minimization to solve the clinical images melanoma detection problem. J. Med. Imaging 15(3) (2023)

    Google Scholar 

  2. Li, R., et al.: An effective data augmentation strategy for CNN-based pest localization and recognition in the field. J. Agric. Eng. 28(2), 89–98 (2022)

    MATH  Google Scholar 

  3. Milošević, N., Racković, M.: Classification based on missing features in deep convolutional neural networks. Neural Netw. 35, 567–580 (2020)

    MATH  Google Scholar 

  4. Benbakreti, S., Benouis, M., Roumane, A., Benbakreti, S.: Impact of the data augmentation on the detection of brain tumor from MRI images based on CNN and pretrained models. J. Med. Imaging 10(3), 245–258 (2023)

    Google Scholar 

  5. Yao, Q., Wang, Y., Yang, Y.: Underwater acoustic target recognition based on data augmentation and residual CNN. IEEE J. Oceanic Eng. 12(4), 567–580 (2022)

    MATH  Google Scholar 

  6. Chu, H.-C., Zhang, Y.-L., Chiang, H.-C.: A CNN sound classification mechanism using data augmentation. J. Acoust. Soc. Am. 45(2), 123–135 (2023)

    MATH  Google Scholar 

  7. Li, D., Xie, W., Wang, B.: Data augmentation and layered deformable mask R-CNN-based detection of wood defects. J. Wood Sci. 10(4), 567–580 (2022)

    Google Scholar 

  8. Li, R., et al.: An effective data augmentation strategy for CNN-based pest localization and recognition in the field. J. Agric. Eng. 45(2), 123–135 (2023)

    MATH  Google Scholar 

  9. Arslan, E., Schulz, J., Rai, K.: Machine learning in epigenomics: insights into cancer biology and medicine. J. Epigenetics 10(2), 123–135 (2023)

    MATH  Google Scholar 

  10. Hao, R., Namdar, K., Liu, L., Haider, M.A., Khalvati, F.: A comprehensive study of data augmentation strategies for prostate cancer detection in diffusion-weighted MRI using convolutional neural networks. J. Digit. Imaging 34(4), 862–876 (2021). https://doi.org/10.1007/s10278-021-00478-7

    Article  Google Scholar 

  11. Wong, J.R., Harris, J.K., Rodriguez-Galindo, C.: The role of immune checkpoint inhibitors in melanoma. Pediatric Blood Cancer 66(11), e27981 (2019). https://onlinelibrary.wiley.com/doi/abs/10.1002/pbc.27981

  12. American Cancer Society: “What is cancer?” (2020). https://www.cancer.org/cancer/cancer-basics/what-is-cancer.html. Accessed 18 May 2024

  13. National Cancer Institute: “Cancer statistics,” (2021). https://www.cancer.gov/about-cancer/understanding/statistics. Accessed 18 May 2024

  14. Skin Cancer Foundation: “The ABCDES of melanoma,” (2021). https://www.skincancer.org/skin-cancer-information/melanoma/melanoma-warning-signs-and-images/do-you-know-your-abcdes/. Accessed 18 May 2024

  15. American Academy of Dermatology: “Skin cancer symptoms: What to look for,” (2021). https://www.aad.org/public/diseases/skin-cancer/types/common/signs. Accessed 18 May 2024

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://www.nature.com/articles/nature14539

  17. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning. MIT Press (2016). https://www.deeplearningbook.org/

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324 (1998). https://ieeexplore.ieee.org/document/726791

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012). https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://www.nature.com/articles/323533a0

  21. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994). https://ieeexplore.ieee.org/document/279181

  22. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009). https://www.sciencedirect.com/science/article/pii/S030645730800179X

  23. Powers, D.M.: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011). https://arxiv.org/abs/2010.16061

  24. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019). https://link.springer.com/article/10.1186/s40537-019-0197-0

  25. Wang, J., Perez, L.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017). https://arxiv.org/abs/1712.04621

  26. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019). https://openaccess.thecvf.com/content_ICCV_2019/html/Yun_CutMix_Regularization_Strategy_to_Train_Strong_Classifiers_with_Localizable_Features_ICCV_2019_paper.html

  27. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 13001–13008 (2020). https://ojs.aaai.org/index.php/AAAI/article/view/7019

  28. Zhang, C., Aamir, M., Guan, Y. et al.: Enhancing lung cancer diagnosis with data fusion and mobile edge computing using DenseNet and CNN. J. Cloud Comp. 13, 91 (2024). https://doi.org/10.1186/s13677-024-00597-w

  29. Girdhar, N., Sinha, A., Gupta, S.: Densenet-II: an improved deep convolutional neural network for melanoma cancer detection. J. Cloud Comput. (2022)

    Google Scholar 

  30. Chen, B., Zhao, T., Liu, J., Lin, L.: Multipath feature recalibration DenseNet for image classification. Int. J. Mach. Learn. Cybern. 12(3), 651–660 (2020). https://doi.org/10.1007/s13042-020-01194-4

    Article  MATH  Google Scholar 

  31. Zhang, K., Guo, Y., Wang, X., Yuan, J., Ding, Q.: Multiple feature reweight DenseNet for image classification. EURASIP J. Image Video Process. 2020, 39 (2020)

    MATH  Google Scholar 

  32. Maron, R.C., et al.: Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Eur. J. Cancer 119, 57–65 (2019)

    Article  MATH  Google Scholar 

  33. Kumar, M., Alshehri, M., AlGhamdi, R., Sharma, P., Deep, V.: A De-ANN inspired skin cancer detection approach using fuzzy C-means clustering. Mob. Netw. Appl. 25, 1319–1329 (2020)

    Article  Google Scholar 

  34. Yoo, J., Kang, S.: Class-adaptive data augmentation for image classification. IEEE Access 11(3), 4–9 (2023)

    MATH  Google Scholar 

  35. Montaha, S., et al.: MNet-10: a robust shallow convolutional neural network model performing ablation study on medical images assessing the effectiveness of applying optimal data augmentation technique. IEEE Access 11, 12345–12356 (2023)

    Google Scholar 

  36. He, Q., Ruan, H., Pan, J., Lyu, X.: A method to detect internal leakage of hydraulic cylinder by combining data augmentation and multiscale residual CNN. J. Eng. 2023, e12301 (2023). received: 7 May 2023, Revised: 5 August 2023, Accepted: 9 August 2023

    Google Scholar 

  37. Ramadan, S.Z.: Using convolutional neural network with cheat sheet and data augmentation to detect breast cancer in mammograms. Comput. Math. Methods Med. 2020, 9 (2020). received: 8 May 2020, Revised: 22 September 2020, Accepted: 20 October 2020, Published: 28 October 2020

    Google Scholar 

  38. Eghbal-zadeh, H., et al.: Rethinking data augmentation for adversarial robustness. Inf. Sci. 654, 119838 (2024)

    Article  Google Scholar 

  39. Huang, S.G., Chung, M.K., Qiu, A.: “Fast mesh data augmentation via chebyshev polynomial of spectral filtering” for the Alzheimer’s Disease Neuroimaging Initiative, vol. 1 (2024). department of Biomedical Engineering, National University of Singapore, Singapore; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53706, United States of America; Institute of Data Science, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore; The Johns Hopkins University, MD, USA (2024)

    Google Scholar 

  40. Lim, G., Yamada, J., Jang, T., Lee, S., Kim, J., Hwang S.J.: Fast autoaugment. In: International Conference on Learning Representations (ICLR) (2019). https://openreview.net/forum?id=rJBiunlA5m

  41. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8019–8028 (2020)

    Google Scholar 

  42. Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, pp. 451–461. Springer (2020)

    Google Scholar 

  43. Wei, B., Hu, G., Ji, S.: Adversarial attacks and defenses in images, graphs and text: a review. Inf. Fusion 64, 1–25 (2020)

    Google Scholar 

  44. Li, T., Jin, J., Yan, X., Qiu, X.: Self-supervised learning and data augmentation for low-resource named entity recognition. Inf. Process. Manag. 58(2), 102493 (2021)

    MATH  Google Scholar 

  45. Wu, X., Wu, J., Li, J.: A novel data augmentation method for medical image classification with deep learning. J. Ambient. Intell. Humaniz. Comput. 13(6), 5651–5661 (2022)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Doctorate Program in Intelligent Industry at the Pontifical Catholic University of Valparaiso for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Hermosilla .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article\(^1\)(If EquinOCS, our proceedings submission system, is used, then the disclaimer can be provided directly in the system.)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hermosilla, P., Soto, R., Ponce, J., Suazo Jara, C., Crawford, B., Contreras, S. (2025). Data Augmentation for Improved Melanoma Classification in Convolutional Neural Networks. In: Guarda, T., Portela, F., Gatica, G. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2024. Communications in Computer and Information Science, vol 2346. Springer, Cham. https://doi.org/10.1007/978-3-031-83210-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83210-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83209-3

  • Online ISBN: 978-3-031-83210-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics