Skip to main content

Third Molar Angle Detection in Dental X-Ray Panoramic Radiographs Using YOLO and GoogleNet Convolutional Neural Networks

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2024)

Abstract

Artificial intelligence (AI) has proven very useful in dental applications in recent years. The automatic extraction of information from X-ray panoramic dental radiographs represents an opportunity to streamline dental diagnosis and improve the precision of detecting oral pathologies. In particular, deep learning (DL) algorithms based on convolutional neural networks (CNNs) have demonstrated high performance in dental image classification, detection, and segmentation applications. However, several challenges remain due to the high variability of categories in dental applications. To characterize four different third molars angles employing X-ray panoramic radiographs, we focused on using the CNN-based object detection technique You Only Look Once (YOLO), which works with the GoogleNet feature extractor CNN. For this, we applied Winter’s classification criterion, which describes the position of the third molars with respect to the longitudinal axis of the second molar. Third molar angles were divided into different categories: distoangular, vertical, mesioangular, and horizontal. A total of 644 panoramic X-ray images were used to train the YOLO algorithm. The proposed model reached an average accuracy performance of up to 97% on the test dataset. These findings exhibit the potential and reassuring results of employing CNNs for dental applications, specifically for object detection in panoramic X-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Huseiny, M.S., Sajit, A.S.: Transfer learning with googlenet for detection of lung cancer. Indonesian J. Electr. Eng. Comput. Sci. 22(2), 1078–1086 (2021)

    Article  MATH  Google Scholar 

  2. AlSayyed, A., et al.: Employing CNN ensemble models in classifying dental caries using oral photographs. Int. J. Data Netw. Sci. 7(4), 1535–1550 (2023)

    Article  MATH  Google Scholar 

  3. Arora, S., Tripathy, S.K., Gupta, R., Srivastava, R.: Exploiting multimodal CNN architecture for automated teeth segmentation on dental panoramic x-ray images. Proc. Inst. Mech. Eng. [H] 237(3), 395–405 (2023)

    Article  Google Scholar 

  4. Chen, S.L., et al.: Missing teeth and restoration detection using dental panoramic radiography based on transfer learning with CNNs. IEEE Access 10, 118654–118664 (2022)

    Article  Google Scholar 

  5. Chen, S.L., et al.: Automated detection system based on convolution neural networks for retained root, endodontic treated teeth, and implant recognition on dental panoramic images. IEEE Sens. J. 22(23), 23293–23306 (2022)

    Article  Google Scholar 

  6. De Tobel, J., Radesh, P., Vandermeulen, D., Thevissen, P.W.: An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. J. Foren. Odontostomatol. 35(2), 42 (2017)

    Google Scholar 

  7. Du, J.: Understanding of object detection based on cnn family and yolo. In: Journal of Physics: Conference Series. vol. 1004, p. 012029. IOP Publishing (2018)

    Google Scholar 

  8. Escoda, C.G., Aytes, L.B.: Cirugía bucal. Océano (2011)

    Google Scholar 

  9. Fu, Q., et al.: A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: a retrospective study. E Clin. Med. 27 (2020)

    Google Scholar 

  10. Lee, J.H., Kim, D.H., Jeong, S.N., Choi, S.H.: Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J. Dent. 77, 106–111 (2018)

    Article  MATH  Google Scholar 

  11. Ormeño-Arriagada, P., Navarro, E., Taramasco, C., Gatica, G., Vásconez, J.P.: Deep learning techniques for oral cancer detection: Enhancing clinical diagnosis by resnet and densenet performance. In: International Conference on Applied Informatics, pp. 59–72. Springer (2024)

    Google Scholar 

  12. Primo, F.T., Primo, B.T., Scheffer, M.A.R., Hernández, P.A.G., Rivaldo, E.G.: Evaluation of 1211 third molars positions according to the classification of winter, pell & gregory. Int j odontostomatol 11(1), 61–5 (2017)

    Article  MATH  Google Scholar 

  13. Sathya, B., Neelaveni, R.: Transfer learning based automatic human identification using dental traits-an aid to forensic odontology. J. Forensic Leg. Med. 76, 102066 (2020)

    Article  Google Scholar 

  14. Terven, J., Córdova-Esparza, D.M., Romero-González, J.A.: A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas. Mach. Learn. Knowl. Extract. 5(4), 1680–1716 (2023)

    Article  Google Scholar 

  15. Thanh, M.T.G., et al.: Deep learning application in dental caries detection using intraoral photos taken by smartphones. Appl. Sci. 12(11), 5504 (2022)

    Article  MATH  Google Scholar 

  16. Tuzoff, D.V., et al.: Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofacial Radiol. 48(4), 20180051 (2019)

    Article  Google Scholar 

  17. Vasconez, J.P., Admoni, H., Cheein, F.A.: A methodology for semantic action recognition based on pose and human-object interaction in avocado harvesting processes. Comput. Electron. Agric. 184, 106057 (2021)

    Article  MATH  Google Scholar 

  18. Vasconez, J.P., Cheein, F.A.: Finding a proper approach to obtain cognitive parameters from human faces under illumination variations. In: 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 946–951. IEEE (2018)

    Google Scholar 

  19. Vasconez, J.P., Salvo, J., Auat, F.: Toward semantic action recognition for avocado harvesting process based on single shot multibox detector. In: 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), pp. 1–6. IEEE (2018)

    Google Scholar 

  20. Vilcapoma, P., et al.: Comparison of faster r-CNN, yolo, and SSD for third molar angle detection in dental panoramic x-rays. Sensors 24(18), 6053 (2024)

    Article  MATH  Google Scholar 

  21. Yilmaz, E., Trocan, M.: A modified version of googlenet for melanoma diagnosis. J. Inform. Telecomm. 5(3), 395–405 (2021)

    MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by ANID (National Research and Development Agency of Chile) under Fondecyt Iniciación 2024 Grant 11240105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Vásconez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vilcapoma, P., Meléndez, D.P., Vásconez, I.N., Gatica, G., Vásconez, J.P. (2025). Third Molar Angle Detection in Dental X-Ray Panoramic Radiographs Using YOLO and GoogleNet Convolutional Neural Networks. In: Guarda, T., Portela, F., Gatica, G. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2024. Communications in Computer and Information Science, vol 2346. Springer, Cham. https://doi.org/10.1007/978-3-031-83210-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83210-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83209-3

  • Online ISBN: 978-3-031-83210-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics