Skip to main content

Optimization of Student Comfort Using Ambient Intelligence and Data Mining

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2024)

Abstract

The issue of comfort in school classrooms in Mexico has not been adequately addressed nor effectively managed with the available tools. This inadequacy stems from a lack of proper understanding regarding their implementation. This study conducts an analysis of the application of data mining techniques utilizing climatological variables within a classroom setting to identify patterns and behaviors that predict student comfort. A comparison of various data mining models is performed, and the most effective models are presented. The study employs a dataset encompassing variables such as Temperature, Humidity, Air Quality, Light, and Noise from a classroom environment. Patterns were identified and subsequently labeled into two clusters to develop a student comfort model. Two unsupervised learning models, hierarchical clustering and k-means, were utilized alongside supervised learning models including Neural Networks, Naive Bayes, Decision Trees, and K-Nearest Neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sánchez-Guevara Sánchez, C., Sánchez, D., y Rubio, C.: The adaptive approach to thermal comfort in seville. Anales de edificación, 2(1), 62–70 (2016)

    Google Scholar 

  2. Kim, J. y de Dear, R.: Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students. Building and Environment 127, 13–22 (2018)

    Google Scholar 

  3. Rodríguez, C.M., Coronado, M.C., Medina, J.M.: Thermal comfort in educational buildings: the classroom-comfort-data method applied to schools in Bogotá. Colombia. Build. Environ. 194, 107682 (2021)

    Article  MATH  Google Scholar 

  4. Kapoor, N.R., Kumar, A., et al.: A systematic review on indoor environmental quality in naturally ventilated school classrooms: a way forward. Adv. Civil Eng. 2021(1), 8851685 (2021)

    Article  MATH  Google Scholar 

  5. Aridi, R., Faraj, J., Ali, S., Gad El-Rab, M., Lemenand, T., Khaled, M.: Energy recovery in air conditioning systems: comprehensive review, classifications, critical analysis, and potential recommendations. Energies 14(18), 5869 (2021)

    Article  Google Scholar 

  6. Khovalyg, D., Kazanci, O.B., et al.: Critical review of standards for indoor thermal environment and air quality. Energy Build. 213, 109819 (2020)

    Article  MATH  Google Scholar 

  7. Han, J., Pei, J., y Kamber, M.: Data mining: concepts and techniques. Elsevier (2011)

    Google Scholar 

  8. Singh, M.K., Ooka, R., et al.: Progress in thermal comfort studies in classrooms over last 50 years and way forward. Energy Build. 188–189, 149–174 (2019)

    Article  Google Scholar 

  9. Damiati, S.A., Zaki, S.A., Abd Razak, A., Rijal, H.B., y Hagishima, A.: Adaptive thermal comfort in university classrooms in Malaysia and Japan. Build. Environ. 122, 294–306 (2017)

    Google Scholar 

  10. Wu, S. y Clements-Croome, D.: Understanding the indoor environment through mining sensory data-A case study. Energy and Build. 39(11), 1183–1191 (2007)

    Google Scholar 

  11. Enescu, D.: A review of thermal comfort models and indicators for indoor environments. Renew. Sustain. Energy Rev. 79, 1353–1379 (2017)

    Article  MATH  Google Scholar 

  12. Toe, D.H.C. y Kubota, T.: Development of an adaptive thermal comfort equation for naturally ventilated buildings in hot-humid climates using ASHRAE RP-884 database. Front. Arch. Res. 2(3), 278–291 (2013)

    Google Scholar 

  13. Yun, J. y Won, K.-H.: Building environment analysis based on temperature and humidity for smart energy systems. Sensors 12(10), 13458–13470 (2012)

    Google Scholar 

  14. Tseng, C.N., Chen, D.Y., Chang, S.H., Huang, W.K., Hsieh, M.J., See, L.C.: Ambient temperature effect on acute myocardial infarction by risk factors: daily data from 2000 to 2017. Taiwan. JACC: Asia 3(2), 228–238 (2023)

    Google Scholar 

  15. Jin, L., Zhang, Y., y Zhang, Z.: Human responses to high humidity in elevated temperatures for people in hot-humid climates. Build. Environ. 114, 257–266 (2017)

    Google Scholar 

  16. Mishra, A.K. y Ramgopal, M.: A thermal comfort field study of naturally ventilated classrooms in Kharagpur, India. Build. Environ. 92, 396-406 (2015)

    Google Scholar 

  17. Muñoz-Benítez, J., Molero-Castillo, G., Benítez-Guerrero, E., Bárcenas, E., Velázquez, A.: Data fusion of physical variables as bearing for user thermal comfort analysis in closed environments. In 2019 IEEE International Conference on Engineering Veracruz (ICEV) (Vol. 1, pp. 1-9) (2019)

    Google Scholar 

  18. Alasadi, S.A., Bhaya, W.S.: Review of data preprocessing techniques in data mining. J. Eng. Appl. Sci. 12(16), 4102–4107 (2017)

    MATH  Google Scholar 

  19. Murtagh, F., Legendre, P.: Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s Criterion? J. Classification 31(3), 274–295 (2014). https://doi.org/10.1007/s00357-014-9161-z

    Article  MathSciNet  MATH  Google Scholar 

  20. Hartigan, J.A., Manchek A.W.: Algorithm AS 136: A k-means clustering algorithm. J. Royal Stat. Society. Series c (applied statistics) 28(1), 100–108 (1979)

    Google Scholar 

  21. Cui, M.: Introduction to the k-means clustering algorithm based on the elbow method. Account., Audit. Fin. 1(1), 5–8 (2020)

    MATH  Google Scholar 

  22. Osisanwo, F.Y., Akinsola, J.E.T., Awodele, O., Hinmikaiye, J.O., Olakanmi, O., Akinjobi, J.: Supervised machine learning algorithms: classification and comparison. Int. J. Comput. Trends Technol. (IJCTT) 48(3), 128–138 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Angel Melendez-Armenta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garcia, I.J., Fernandez-Dominguez, F., Melendez-Armenta, R.A., Muñoz-Benítez, J. (2025). Optimization of Student Comfort Using Ambient Intelligence and Data Mining. In: Guarda, T., Portela, F., Gatica, G. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2024. Communications in Computer and Information Science, vol 2346. Springer, Cham. https://doi.org/10.1007/978-3-031-83210-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83210-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83209-3

  • Online ISBN: 978-3-031-83210-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics