Abstract
This study investigates the combination of binarization methods and chaotic maps within the Reptile Search Algorithm to address binary combinatorial optimization challenges, specifically concentrating on the Set Covering Problem. Binarization in metaheuristics is critical for transforming continuous search spaces into discrete ones, which is essential for efficiently solving binary problems. We investigate the impact of chaotic maps, precisely the chaotic map type “sine”, to enhance the stochastic components of metaheuristics, facilitating robust broadening and refinement of the search space. Our experimental analysis compares the performance of the Reptile Search Algorithm, enhanced with different binarization strategies, in comparison to established metaheuristics like the well-known Particle Swarm Optimization and the popular Grey Wolf Optimizer. The results demonstrate that the Reptile Search Algorithm with elitist binarization strategies, particularly when integrated with chaotic maps, significantly outperforms other algorithms to achieve near-optimal solutions with minimal variance. These findings highlight the effectiveness of sophisticated binarization strategies and the potential of chaotic maps to refine the search capabilities of metaheuristics in complex optimization scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abdel-Basset, M., Sallam, K.M., Mohamed, R., Elgendi, I., Munasinghe, K., Elkomy, O.M.: An improved binary grey-wolf optimizer with simulated annealing for feature selection. IEEE Access 9, 139792–139822 (2021)
Abualigah, L., Elaziz, M.A., Sumari, P., Geem, Z.W., Gandomi, A.H.: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer. Expert Syst. App. 191, 116158 (2022)
Agrawal, P., Abutarboush, H.F., Ganesh, T., Mohamed, A.W.: Metaheuristic algorithms on feature selection: a survey of one decade of research (2009–2019). IEEE Access 9, 26766–26791 (2021)
Agrawal, P., Ganesh, T., Mohamed, A.W.: Chaotic gaining sharing knowledge-based optimization algorithm: an improved metaheuristic algorithm for feature selection. Soft. Comput. 25(14), 9505–9528 (2021). https://doi.org/10.1007/s00500-021-05874-3
Agrawal, U., Rohatgi, V., Katarya, R.: Normalized mutual information-based equilibrium optimizer with chaotic maps for wrapper-filter feature selection. Expert Syst. App. 207, 118107 (2022)
Arora, S., Anand, P.: Chaotic grasshopper optimization algorithm for global optimization. Neural Comput. App. 31, 4385–4405 (2019)
Beasley, J.E.: An algorithm for set covering problem. Eur. J. Oper. Res. 31(1), 85–93 (1987)
Becerra-Rozas, M., et al.: Continuous metaheuristics for binary optimization problems: an updated systematic literature review. Mathematics 11(1), 129 (2022)
Becerra-Rozas, M., Lemus-Romani, J., Cisternas-Caneo, F., Crawford, B., Soto, R., García, J.: Swarm-inspired computing to solve binary optimization problems: a backward q-learning binarization scheme selector. Mathematics 10(24), 4776 (2022)
Chih, M.: Stochastic stability analysis of particle swarm optimization with pseudo random number assignment strategy. Eur. J. Oper. Res. 305(2), 562–593 (2023)
Chou, J.-S., Truong, D.-N.: Multiobjective forensic-based investigation algorithm for solving structural design problems. Autom. Constr. 134, 104084 (2022)
Cisternas-Caneo, F., Crawford, B., Soto, R., Giachetti, G., Paz, Á., Fritz, A.P.: Chaotic binarization schemes for solving combinatorial optimization problems using continuous metaheuristics. Mathematics 12(2), 262 (2024)
Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., Paredes, F.: Putting continuous metaheuristics to work in binary search spaces. Complexity 2017, 840231 (2017)
Hegazy, A.E., Makhlouf, M.A., El-Tawel, G.S.: Feature selection using chaotic salp swarm algorithm for data classification. Arab. J. Sci. Eng. 44, 3801–3816 (2019)
Ho, Y.-C., Pepyne, D.L.: Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory App. 115(3), 549–570 (2002)
Hussien, A.G., Amin, M.: A self-adaptive Harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int. J. Mach. Learn. Cybern. 13, 1–28 (2022)
Ibrahim, A.M., Tawhid, M.A.: Chaotic electromagnetic field optimization. Artif. Intell. Rev. 56, 1–42 (2022)
Jiang, J., Jiang, R., Meng, X., Li, K.: SCGSA: a sine chaotic gravitational search algorithm for continuous optimization problems. Expert Syst. Appl. 144, 113118 (2020)
Lemus-Romani, J., et al.: A novel learning-based binarization scheme selector for swarm algorithms solving combinatorial problems. Mathematics. 9(22), 2887 (2021)
Li, X.-D., Wang, J.-S., Hao, W.-K., Zhang, M., Wang, M.: Chaotic arithmetic optimization algorithm. Appl. Intell. 56, 1–40 (2022)
Morales-Castañeda, B., Zaldivar, D., Cuevas, E., Fausto, F., Rodríguez, A.: A better balance in metaheuristic algorithms: Does it exist? Swarm Evol. Comput. 54, 100671 (2020)
Rajwar, K., Deep, K., Das, S.: An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artif. Intell. Rev. 56, 1–71 (2023)
Salleh, M.N.M., et al.: Exploration and exploitation measurement in swarm-based metaheuristic algorithms: an empirical analysis. In: Ghazali, R., Deris, M.M., Nawi, N.M., Abawajy, J.H. (eds.) SCDM 2018. AISC, vol. 700, pp. 24–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72550-5_3
Sasmal, B., Hussien, A.G., Das, A., Dhal, K.G., Saha, R.: Reptile search algorithm: theory, variants, applications, and performance evaluation. Arch. Comput. Methods Eng. 31(1), 521–549 (2024)
Seyyedabbasi, A.: WOASCALF: a new hybrid whale optimization algorithm based on sine cosine algorithm and levy flight to solve global optimization problems. Adv. Eng. Softw. 173, 103272 (2022)
Talbi, E.,-G.: Metaheuristics: from Design to Implementation. John Wiley & Sons, Hoboken (2009)
Wang, R., Hao, K., Chen, L., Wang, T., Jiang, C.: A novel hybrid particle swarm optimization using adaptive strategy. Inf. Sci. 579, 231–250 (2021)
Acknowledgements
Felipe Cisternas-Caneo is supported by the National Agency for Research and Development (ANID)/ Scholarship Program/DOCTORADO NACIONAL/2023-21230203. Jose Barrera-García is supported by National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2024-21242516. Marcelo Becerra-Rozas is supported by National Agency for Research and Development (ANID)/ Scholarship Program/DOCTORADO NACIONAL/ 2021-21210740.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cisternas-Caneo, F. et al. (2025). Unleashing Chaos: Enhanced Reptile Search for the Set Covering Problem. In: Guarda, T., Portela, F., Gatica, G. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2024. Communications in Computer and Information Science, vol 2346. Springer, Cham. https://doi.org/10.1007/978-3-031-83210-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-83210-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-83209-3
Online ISBN: 978-3-031-83210-9
eBook Packages: Computer ScienceComputer Science (R0)