Skip to main content

Unleashing Chaos: Enhanced Reptile Search for the Set Covering Problem

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2024)

Abstract

This study investigates the combination of binarization methods and chaotic maps within the Reptile Search Algorithm to address binary combinatorial optimization challenges, specifically concentrating on the Set Covering Problem. Binarization in metaheuristics is critical for transforming continuous search spaces into discrete ones, which is essential for efficiently solving binary problems. We investigate the impact of chaotic maps, precisely the chaotic map type “sine”, to enhance the stochastic components of metaheuristics, facilitating robust broadening and refinement of the search space. Our experimental analysis compares the performance of the Reptile Search Algorithm, enhanced with different binarization strategies, in comparison to established metaheuristics like the well-known Particle Swarm Optimization and the popular Grey Wolf Optimizer. The results demonstrate that the Reptile Search Algorithm with elitist binarization strategies, particularly when integrated with chaotic maps, significantly outperforms other algorithms to achieve near-optimal solutions with minimal variance. These findings highlight the effectiveness of sophisticated binarization strategies and the potential of chaotic maps to refine the search capabilities of metaheuristics in complex optimization scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Basset, M., Sallam, K.M., Mohamed, R., Elgendi, I., Munasinghe, K., Elkomy, O.M.: An improved binary grey-wolf optimizer with simulated annealing for feature selection. IEEE Access 9, 139792–139822 (2021)

    Article  Google Scholar 

  2. Abualigah, L., Elaziz, M.A., Sumari, P., Geem, Z.W., Gandomi, A.H.: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer. Expert Syst. App. 191, 116158 (2022)

    Article  MATH  Google Scholar 

  3. Agrawal, P., Abutarboush, H.F., Ganesh, T., Mohamed, A.W.: Metaheuristic algorithms on feature selection: a survey of one decade of research (2009–2019). IEEE Access 9, 26766–26791 (2021)

    Article  Google Scholar 

  4. Agrawal, P., Ganesh, T., Mohamed, A.W.: Chaotic gaining sharing knowledge-based optimization algorithm: an improved metaheuristic algorithm for feature selection. Soft. Comput. 25(14), 9505–9528 (2021). https://doi.org/10.1007/s00500-021-05874-3

    Article  MATH  Google Scholar 

  5. Agrawal, U., Rohatgi, V., Katarya, R.: Normalized mutual information-based equilibrium optimizer with chaotic maps for wrapper-filter feature selection. Expert Syst. App. 207, 118107 (2022)

    Article  Google Scholar 

  6. Arora, S., Anand, P.: Chaotic grasshopper optimization algorithm for global optimization. Neural Comput. App. 31, 4385–4405 (2019)

    Article  MATH  Google Scholar 

  7. Beasley, J.E.: An algorithm for set covering problem. Eur. J. Oper. Res. 31(1), 85–93 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Becerra-Rozas, M., et al.: Continuous metaheuristics for binary optimization problems: an updated systematic literature review. Mathematics 11(1), 129 (2022)

    Article  MathSciNet  Google Scholar 

  9. Becerra-Rozas, M., Lemus-Romani, J., Cisternas-Caneo, F., Crawford, B., Soto, R., García, J.: Swarm-inspired computing to solve binary optimization problems: a backward q-learning binarization scheme selector. Mathematics 10(24), 4776 (2022)

    Article  Google Scholar 

  10. Chih, M.: Stochastic stability analysis of particle swarm optimization with pseudo random number assignment strategy. Eur. J. Oper. Res. 305(2), 562–593 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chou, J.-S., Truong, D.-N.: Multiobjective forensic-based investigation algorithm for solving structural design problems. Autom. Constr. 134, 104084 (2022)

    Article  MATH  Google Scholar 

  12. Cisternas-Caneo, F., Crawford, B., Soto, R., Giachetti, G., Paz, Á., Fritz, A.P.: Chaotic binarization schemes for solving combinatorial optimization problems using continuous metaheuristics. Mathematics 12(2), 262 (2024)

    Article  Google Scholar 

  13. Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., Paredes, F.: Putting continuous metaheuristics to work in binary search spaces. Complexity 2017, 840231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hegazy, A.E., Makhlouf, M.A., El-Tawel, G.S.: Feature selection using chaotic salp swarm algorithm for data classification. Arab. J. Sci. Eng. 44, 3801–3816 (2019)

    Article  MATH  Google Scholar 

  15. Ho, Y.-C., Pepyne, D.L.: Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory App. 115(3), 549–570 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hussien, A.G., Amin, M.: A self-adaptive Harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int. J. Mach. Learn. Cybern. 13, 1–28 (2022)

    Article  MATH  Google Scholar 

  17. Ibrahim, A.M., Tawhid, M.A.: Chaotic electromagnetic field optimization. Artif. Intell. Rev. 56, 1–42 (2022)

    MATH  Google Scholar 

  18. Jiang, J., Jiang, R., Meng, X., Li, K.: SCGSA: a sine chaotic gravitational search algorithm for continuous optimization problems. Expert Syst. Appl. 144, 113118 (2020)

    Article  MATH  Google Scholar 

  19. Lemus-Romani, J., et al.: A novel learning-based binarization scheme selector for swarm algorithms solving combinatorial problems. Mathematics. 9(22), 2887 (2021)

    Article  MATH  Google Scholar 

  20. Li, X.-D., Wang, J.-S., Hao, W.-K., Zhang, M., Wang, M.: Chaotic arithmetic optimization algorithm. Appl. Intell. 56, 1–40 (2022)

    Article  MATH  Google Scholar 

  21. Morales-Castañeda, B., Zaldivar, D., Cuevas, E., Fausto, F., Rodríguez, A.: A better balance in metaheuristic algorithms: Does it exist? Swarm Evol. Comput. 54, 100671 (2020)

    Article  MATH  Google Scholar 

  22. Rajwar, K., Deep, K., Das, S.: An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artif. Intell. Rev. 56, 1–71 (2023)

    Article  MATH  Google Scholar 

  23. Salleh, M.N.M., et al.: Exploration and exploitation measurement in swarm-based metaheuristic algorithms: an empirical analysis. In: Ghazali, R., Deris, M.M., Nawi, N.M., Abawajy, J.H. (eds.) SCDM 2018. AISC, vol. 700, pp. 24–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72550-5_3

    Chapter  MATH  Google Scholar 

  24. Sasmal, B., Hussien, A.G., Das, A., Dhal, K.G., Saha, R.: Reptile search algorithm: theory, variants, applications, and performance evaluation. Arch. Comput. Methods Eng. 31(1), 521–549 (2024)

    Article  MATH  Google Scholar 

  25. Seyyedabbasi, A.: WOASCALF: a new hybrid whale optimization algorithm based on sine cosine algorithm and levy flight to solve global optimization problems. Adv. Eng. Softw. 173, 103272 (2022)

    Article  MATH  Google Scholar 

  26. Talbi, E.,-G.: Metaheuristics: from Design to Implementation. John Wiley & Sons, Hoboken (2009)

    Google Scholar 

  27. Wang, R., Hao, K., Chen, L., Wang, T., Jiang, C.: A novel hybrid particle swarm optimization using adaptive strategy. Inf. Sci. 579, 231–250 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Felipe Cisternas-Caneo is supported by the National Agency for Research and Development (ANID)/ Scholarship Program/DOCTORADO NACIONAL/2023-21230203. Jose Barrera-García is supported by National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2024-21242516. Marcelo Becerra-Rozas is supported by National Agency for Research and Development (ANID)/ Scholarship Program/DOCTORADO NACIONAL/ 2021-21210740.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felipe Cisternas-Caneo or Broderick Crawford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cisternas-Caneo, F. et al. (2025). Unleashing Chaos: Enhanced Reptile Search for the Set Covering Problem. In: Guarda, T., Portela, F., Gatica, G. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2024. Communications in Computer and Information Science, vol 2346. Springer, Cham. https://doi.org/10.1007/978-3-031-83210-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83210-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83209-3

  • Online ISBN: 978-3-031-83210-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics