Skip to main content

HistoGraphCoarse: Strategizing Graph Coarsening Techniques for Efficient Analysis of Gigapixel Histopathological Images

  • Conference paper
  • First Online:
Graphs in Biomedical Image Analysis (GRAIL 2024)

Abstract

Histopathological images employ both pixel-based and graph-based methods to capture microenvironmental patterns, significantly enhancing machine learning applications for various downstream tasks. However, their substantial size poses considerable computational challenges due to gigapixel images and graphs with thousands of nodes. Traditional localized analysis techniques, such as patch-based methods, assume uniform labels and fail to provide a comprehensive understanding of biological entities and their context. In this work, we propose the use of graph coarsening techniques for the compression of cell graphs, addressing computational challenges while preserving critical information. Our approach reduces graph size by maintaining cellular morphology, topology, and spatial relationships, thereby preserving interpretability across diverse applications. This enables analysis at the whole slide image (WSI) level using cell graph representations, avoiding the limitations of patch-based methods. We validate this approach on the breast cancer dataset for multi-class cancer subtyping, demonstrating that our coarsened graphs achieve performance comparable to state-of-the-art models. Furthermore, the preserved explainability of our method confirms the retention of essential information in the coarsened graphs. Our coarsened graphs surpass both image-based and original cell graph representations in computational efficiency and storage, advancing histopathological image analysis for various downstream tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, S.F., Le Vuong, T.T., Kim, K., Song, B., Kwak, J.T.: Multi-cell type and multi-level graph aggregation network for cancer grading in pathology images. Med. Image Anal. 90, 102936 (2023)

    Article  Google Scholar 

  2. Ahmedt-Aristizabal, D., Armin, M.A., Denman, S., Fookes, C., Petersson, L.: A survey on graph-based deep learning for computational histopathology. Comput. Med. Imaging Graph. 95, 102027 (2022)

    Article  MATH  Google Scholar 

  3. Brancati, N., et al.: Bracs: a dataset for breast carcinoma subtyping in h &e histology images. Database 2022, baac093 (2022)

    Google Scholar 

  4. Brancati, N., De Pietro, G., Riccio, D., Frucci, M.: Gigapixel histopathological image analysis using attention-based neural networks. IEEE Access 9, 87552–87562 (2021)

    Article  Google Scholar 

  5. Cai, C., Wang, D., Wang, Y.: Graph coarsening with neural networks. arXiv preprint arXiv:2102.01350 (2021)

  6. Graham, S., et al.: Hover-net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Article  MATH  Google Scholar 

  7. Hirra, I., et al.: Breast cancer classification from histopathological images using patch-based deep learning modeling. IEEE Access 9, 24273–24287 (2021)

    Article  MATH  Google Scholar 

  8. Hossain, M.S., et al.: Region of interest (ROI) selection using vision transformer for automatic analysis using whole slide images. Sci. Rep. 13(1), 11314 (2023)

    Article  MATH  Google Scholar 

  9. Hosseini, M.S., et al.: Computational pathology: a survey review and the way forward. J. Pathol. Inf. 100357 (2024)

    Google Scholar 

  10. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016)

    Google Scholar 

  11. Hou, W., Huang, H., Peng, Q., Yu, R., Yu, L., Wang, L.: Spatial-hierarchical graph neural network with dynamic structure learning for histological image classification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 181–191. Springer (2022)

    Google Scholar 

  12. Huang, C.H., Veillard, A., Roux, L., Loménie, N., Racoceanu, D.: Time-efficient sparse analysis of histopathological whole slide images. Comput. Med. Imaging Graph. 35(7–8), 579–591 (2011)

    Article  Google Scholar 

  13. Huang, Z., Zhang, S., Xi, C., Liu, T., Zhou, M.: Scaling up graph neural networks via graph coarsening. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 675–684 (2021)

    Google Scholar 

  14. Jaume, G., Pati, P., Anklin, V., Foncubierta, A., Gabrani, M.: Histocartography: a toolkit for graph analytics in digital pathology. In: MICCAI Workshop on Computational Pathology, pp. 117–128. PMLR (2021)

    Google Scholar 

  15. Kataria, M., Khandelwal, A., Das, R., Kumar, S., Jayadeva, J.: Linear complexity framework for feature-aware graph coarsening via hashing. In: NeurIPS 2023 Workshop: New Frontiers in Graph Learning (2023)

    Google Scholar 

  16. Kumar, M., Sharma, A., Saxena, S., Kumar, S.: Featured graph coarsening with similarity guarantees (2023)

    Google Scholar 

  17. Loukas, A.: Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res. 20(116), 1–42 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  MATH  Google Scholar 

  19. Lu, W., Toss, M., Dawood, M., Rakha, E., Rajpoot, N., Minhas, F.: Slidegraph+: whole slide image level graphs to predict her2 status in breast cancer. Med. Image Anal. 80, 102486 (2022)

    Article  Google Scholar 

  20. Maier, A., Syben, C., Lasser, T., Riess, C.: A gentle introduction to deep learning in medical image processing. Z. Med. Phys. 29(2), 86–101 (2019)

    Article  Google Scholar 

  21. Marini, N., et al.: Multi-scale task multiple instance learning for the classification of digital pathology images with global annotations. In: MICCAI Workshop on Computational Pathology, pp. 170–181. PMLR (2021)

    Google Scholar 

  22. Meng, X., Zou, T.: Clinical applications of graph neural networks in computational histopathology: a review. Comput. Biol. Med. 164, 107201 (2023)

    Article  MATH  Google Scholar 

  23. Mercan, C., Aksoy, S., Mercan, E., Shapiro, L.G., Weaver, D.L., Elmore, J.G.: From patch-level to ROI-level deep feature representations for breast histopathology classification. In: Medical Imaging 2019: Digital Pathology, vol. 10956, pp. 86–93. SPIE (2019)

    Google Scholar 

  24. Pati, P., et al.: HACT-Net: a hierarchical cell-to-tissue graph neural network for histopathological image classification. In: Sudre, C.H., et al. (eds.) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis. UNSURE GRAIL 2020 2020. Lecture Notes in Computer Science, pp. 208–219. Springer (2020)

    Google Scholar 

  25. Pati, P., et al.: Hierarchical graph representations in digital pathology. Med. Image Anal. 75, 102264 (2022)

    Article  MATH  Google Scholar 

  26. Tabibu, S., Vinod, P., Jawahar, C.: Pan-renal cell carcinoma classification and survival prediction from histopathology images using deep learning. Sci. Rep. 9(1), 10509 (2019)

    Article  MATH  Google Scholar 

  27. Tellez, D., Litjens, G., van der Laak, J., Ciompi, F.: Neural image compression for gigapixel histopathology image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 567–578 (2019)

    Article  Google Scholar 

  28. Zhang, F., Geng, J., Zhang, D.G., Gui, J., Su, R.: Prediction of cancer recurrence based on compact graphs of whole slide images. Comput. Biol. Med. 167, 107663 (2023)

    Article  MATH  Google Scholar 

  29. Zhou, Y., Graham, S., Alemi Koohbanani, N., Shaban, M., Heng, P.A., Rajpoot, N.: CGC-Net: cell graph convolutional network for grading of colorectal cancer histology images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekta Srivastava .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, E. et al. (2025). HistoGraphCoarse: Strategizing Graph Coarsening Techniques for Efficient Analysis of Gigapixel Histopathological Images. In: Ahmadi, SA., Kazi, A. (eds) Graphs in Biomedical Image Analysis. GRAIL 2024. Lecture Notes in Computer Science, vol 15182. Springer, Cham. https://doi.org/10.1007/978-3-031-83243-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83243-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83242-0

  • Online ISBN: 978-3-031-83243-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics