Abstract
In this study, a novel approach to disease classification from medical images using a customized convolutional neural network (CNN) and an advanced Explainable AI algorithm, XGrad-Cam, is presented. The proposed CNN model is streamlined with 11 layers, ensuring efficient training and accurate disease classification. XGrad-Cam, an extension of the Grad-Cam algorithm, offers improved visualization by highlighting critical areas contributing to the classification decisions. This model was evaluated on medical images, including chest CT scans for SARS-COVID and brain MRIs for Alzheimer’s disease. Through extensive experimentation with both binary and multi-class disease datasets, the model demonstrated high accuracy, precision, recall, sensitivity, specificity, and F-1 scores, notably achieving 90.8% accuracy for SARS-COVID and 91.0% for Alzheimer’s disease classification. The utilization of XGrad-Cam enhances the interpretability of the CNN’s decisions, providing valuable insights into the disease classification process. This study contributes to the fields of medical image analysis and Explainable AI by offering a highly efficient and interpretable model for disease classification, paving the way for future advancements in automated diagnosis and treatment planning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alzheimer’s Dataset. https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images. Accessed Jan 2024
SARS-COV-2 Ct-Scan Dataset. https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset. Accessed Jan 2024
Allioui, H., et al.: A multi-agent deep reinforcement learning approach for enhancement of Covid-19 CT image segmentation. J. Pers. Med. 12(2) (2022)
Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: Winter Conference on Applications of Computer Vision (WACV), pp. 839–847 (2018)
Damaševičius, R., Jagatheesaperumal, S.K., Kandala, R.N.V.P.S., Hussain, S., Alizadehsani, R., Gorriz, J.M.: Deep learning for personalized health monitoring and prediction: a review. Comput. Intell. 40(3) (2024). https://doi.org/10.1111/coin.12682
Desai, S., Ramaswamy, H.G.: Ablation-CAM: visual explanations for deep convolutional network via gradient-free localization. In: Winter Conference on Applications of Computer Vision (WACV), pp. 972–980 (2020)
Jaszcz, A., Połap, D., Damaševičius, R.: Lung X-Ray image segmentation using heuristic red fox optimization algorithm. Sci. Program. 2022 (2022)
Kumar, V., Singh, D., Kaur, M., Damaševičius, R.: Overview of current state of research on the application of artificial intelligence techniques for COVID-19. PeerJ Comput. Sci. 7, 1–34 (2021)
Kurdi, S.Z., Ali, M.H., Jaber, M.M., Saba, T., Rehman, A., Damaševičius, R.: Brain tumor classification using meta-heuristic optimized convolutional neural networks. J. Pers. Med. 13(2) (2023)
Liu, J., et al.: A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol. 19(6), 578–595 (2014)
Odusami, M., Damaševičius, R., Milieškaitė-Belousovienė, E., Maskeliūnas, R.: Alzheimer’s disease stage recognition from MRI and pet imaging data using pareto-optimal quantum dynamic optimization. Heliyon 10(15) (2024). https://doi.org/10.1016/j.heliyon.2024.e34402
Odusami, M., Maskeliunas, R., Damaševičius, R., Misra, S.: Comparable study of pre-trained model on Alzheimer disease classification. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12953, pp. 63–74. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86976-2_5
Odusami, M., Maskeliūnas, R., Damaševičius, R.: Optimized convolutional fusion for multimodal neuroimaging in Alzheimer’s disease diagnosis: enhancing data integration and feature extraction. J. Pers. Med. 13(10), 1496 (2023). https://doi.org/10.3390/jpm13101496
Odusami, M., Maskeliūnas, R., Damaševičius, R.: Pareto optimized adaptive learning with transposed convolution for image fusion Alzheimer’s disease classification. Brain Sci. 13(7) (2023)
Odusami, M., Maskeliūnas, R., Damaševičius, R.: Pixel-level fusion approach with vision transformer for early detection of Alzheimer’s disease. Electronics 12(5) (2023)
Odusami, M., Maskeliūnas, R., Damaševičius, R., Misra, S.: ResD hybrid model based on resnet18 and densenet121 for early Alzheimer disease classification. In: Abraham, A., Gandhi, N., Hanne, T., Hong, T.-P., Nogueira Rios, T., Ding, W. (eds.) Intelligent Systems Design and Applications: 21st International Conference on Intelligent Systems Design and Applications (ISDA 2021) Held During December 13–15, 2021, pp. 296–305. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-96308-8_27
Odusami, M., Maskeliūnas, R., Damaševičius, R., Misra, S.: Explainable deep-learning-based diagnosis of Alzheimer’s disease using multimodal input fusion of pet and MRI images. J. Med. Biol. Eng. 43(3), 291–302 (2023)
Odusami, M., Maskeliūnas, R., Damaševičius, R., Misra, S.: Machine learning with multimodal neuroimaging data to classify stages of Alzheimer’s disease: a systematic review and meta-analysis. Cogn. Neurodyn. 18(3), 775–794 (2024). https://doi.org/10.1007/s11571-023-09993-5
Rajinikanth, V., Kadry, S., Damasevicius, R., Gnanasoundharam, J., Abed Mohammed, M., Glan Devadhas, G.: UNet with two-fold training for effective segmentation of lung section in chest X-Ray. In: Proceedings of the 2022 3rd International Conference on Intelligent Computing, Instrumentation and Control Technologies: Computational Intelligence for Smart Systems, ICICICT 2022, pp. 977–981 (2022)
Rajinikanth, V., Kadry, S., Damasevicius, R., Pandeeswaran, C., Abed Mohammed, M., Glan Devadhas, G.: Pneumonia detection in chest X-ray using inceptionV3 and multi-class classification. In: Proceedings of the 2022 3rd International Conference on Intelligent Computing, Instrumentation and Control Technologies: Computational Intelligence for Smart Systems, ICICICT 2022, pp. 972–976 (2022)
Ramya, J., Maheswari, B.U., Rajakumar, M., Sonia, R.: Alzheimer’s disease segmentation and classification on MRI brain images using enhanced expectation maximization adaptive histogram (EEM-AH) and machine learning. Inf. Technol. Control 51(4), 786–800 (2022)
Rehman, N.U., et al.: A self-activated CNN approach for multi-class chest-related COVID-19 detection. Appl. Sci. 11(19) (2021)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)
Zuo, C., et al.: Deep learning in optical metrology: a review. Light Sci. Appl. 11(39), 1–54 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tehsin, S., Nasir, I.M., Damaševičius, R. (2025). Explainability of Disease Classification from Medical Images Using XGrad-Cam. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2024. Communications in Computer and Information Science, vol 2348. Springer, Cham. https://doi.org/10.1007/978-3-031-83435-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-83435-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-83434-9
Online ISBN: 978-3-031-83435-6
eBook Packages: Computer ScienceComputer Science (R0)