Skip to main content

Explainability of Disease Classification from Medical Images Using XGrad-Cam

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2024)

Abstract

In this study, a novel approach to disease classification from medical images using a customized convolutional neural network (CNN) and an advanced Explainable AI algorithm, XGrad-Cam, is presented. The proposed CNN model is streamlined with 11 layers, ensuring efficient training and accurate disease classification. XGrad-Cam, an extension of the Grad-Cam algorithm, offers improved visualization by highlighting critical areas contributing to the classification decisions. This model was evaluated on medical images, including chest CT scans for SARS-COVID and brain MRIs for Alzheimer’s disease. Through extensive experimentation with both binary and multi-class disease datasets, the model demonstrated high accuracy, precision, recall, sensitivity, specificity, and F-1 scores, notably achieving 90.8% accuracy for SARS-COVID and 91.0% for Alzheimer’s disease classification. The utilization of XGrad-Cam enhances the interpretability of the CNN’s decisions, providing valuable insights into the disease classification process. This study contributes to the fields of medical image analysis and Explainable AI by offering a highly efficient and interpretable model for disease classification, paving the way for future advancements in automated diagnosis and treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer’s Dataset. https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images. Accessed Jan 2024

  2. SARS-COV-2 Ct-Scan Dataset. https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset. Accessed Jan 2024

  3. Allioui, H., et al.: A multi-agent deep reinforcement learning approach for enhancement of Covid-19 CT image segmentation. J. Pers. Med. 12(2) (2022)

    Google Scholar 

  4. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: Winter Conference on Applications of Computer Vision (WACV), pp. 839–847 (2018)

    Google Scholar 

  5. Damaševičius, R., Jagatheesaperumal, S.K., Kandala, R.N.V.P.S., Hussain, S., Alizadehsani, R., Gorriz, J.M.: Deep learning for personalized health monitoring and prediction: a review. Comput. Intell. 40(3) (2024). https://doi.org/10.1111/coin.12682

  6. Desai, S., Ramaswamy, H.G.: Ablation-CAM: visual explanations for deep convolutional network via gradient-free localization. In: Winter Conference on Applications of Computer Vision (WACV), pp. 972–980 (2020)

    Google Scholar 

  7. Jaszcz, A., Połap, D., Damaševičius, R.: Lung X-Ray image segmentation using heuristic red fox optimization algorithm. Sci. Program. 2022 (2022)

    Google Scholar 

  8. Kumar, V., Singh, D., Kaur, M., Damaševičius, R.: Overview of current state of research on the application of artificial intelligence techniques for COVID-19. PeerJ Comput. Sci. 7, 1–34 (2021)

    Article  MATH  Google Scholar 

  9. Kurdi, S.Z., Ali, M.H., Jaber, M.M., Saba, T., Rehman, A., Damaševičius, R.: Brain tumor classification using meta-heuristic optimized convolutional neural networks. J. Pers. Med. 13(2) (2023)

    Google Scholar 

  10. Liu, J., et al.: A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol. 19(6), 578–595 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Odusami, M., Damaševičius, R., Milieškaitė-Belousovienė, E., Maskeliūnas, R.: Alzheimer’s disease stage recognition from MRI and pet imaging data using pareto-optimal quantum dynamic optimization. Heliyon 10(15) (2024). https://doi.org/10.1016/j.heliyon.2024.e34402

  12. Odusami, M., Maskeliunas, R., Damaševičius, R., Misra, S.: Comparable study of pre-trained model on Alzheimer disease classification. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12953, pp. 63–74. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86976-2_5

    Chapter  MATH  Google Scholar 

  13. Odusami, M., Maskeliūnas, R., Damaševičius, R.: Optimized convolutional fusion for multimodal neuroimaging in Alzheimer’s disease diagnosis: enhancing data integration and feature extraction. J. Pers. Med. 13(10), 1496 (2023). https://doi.org/10.3390/jpm13101496

  14. Odusami, M., Maskeliūnas, R., Damaševičius, R.: Pareto optimized adaptive learning with transposed convolution for image fusion Alzheimer’s disease classification. Brain Sci. 13(7) (2023)

    Google Scholar 

  15. Odusami, M., Maskeliūnas, R., Damaševičius, R.: Pixel-level fusion approach with vision transformer for early detection of Alzheimer’s disease. Electronics 12(5) (2023)

    Google Scholar 

  16. Odusami, M., Maskeliūnas, R., Damaševičius, R., Misra, S.: ResD hybrid model based on resnet18 and densenet121 for early Alzheimer disease classification. In: Abraham, A., Gandhi, N., Hanne, T., Hong, T.-P., Nogueira Rios, T., Ding, W. (eds.) Intelligent Systems Design and Applications: 21st International Conference on Intelligent Systems Design and Applications (ISDA 2021) Held During December 13–15, 2021, pp. 296–305. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-96308-8_27

    Chapter  Google Scholar 

  17. Odusami, M., Maskeliūnas, R., Damaševičius, R., Misra, S.: Explainable deep-learning-based diagnosis of Alzheimer’s disease using multimodal input fusion of pet and MRI images. J. Med. Biol. Eng. 43(3), 291–302 (2023)

    Article  MATH  Google Scholar 

  18. Odusami, M., Maskeliūnas, R., Damaševičius, R., Misra, S.: Machine learning with multimodal neuroimaging data to classify stages of Alzheimer’s disease: a systematic review and meta-analysis. Cogn. Neurodyn. 18(3), 775–794 (2024). https://doi.org/10.1007/s11571-023-09993-5

    Article  MATH  Google Scholar 

  19. Rajinikanth, V., Kadry, S., Damasevicius, R., Gnanasoundharam, J., Abed Mohammed, M., Glan Devadhas, G.: UNet with two-fold training for effective segmentation of lung section in chest X-Ray. In: Proceedings of the 2022 3rd International Conference on Intelligent Computing, Instrumentation and Control Technologies: Computational Intelligence for Smart Systems, ICICICT 2022, pp. 977–981 (2022)

    Google Scholar 

  20. Rajinikanth, V., Kadry, S., Damasevicius, R., Pandeeswaran, C., Abed Mohammed, M., Glan Devadhas, G.: Pneumonia detection in chest X-ray using inceptionV3 and multi-class classification. In: Proceedings of the 2022 3rd International Conference on Intelligent Computing, Instrumentation and Control Technologies: Computational Intelligence for Smart Systems, ICICICT 2022, pp. 972–976 (2022)

    Google Scholar 

  21. Ramya, J., Maheswari, B.U., Rajakumar, M., Sonia, R.: Alzheimer’s disease segmentation and classification on MRI brain images using enhanced expectation maximization adaptive histogram (EEM-AH) and machine learning. Inf. Technol. Control 51(4), 786–800 (2022)

    Article  Google Scholar 

  22. Rehman, N.U., et al.: A self-activated CNN approach for multi-class chest-related COVID-19 detection. Appl. Sci. 11(19) (2021)

    Google Scholar 

  23. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)

    Google Scholar 

  24. Zuo, C., et al.: Deep learning in optical metrology: a review. Light Sci. Appl. 11(39), 1–54 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robertas Damaševičius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tehsin, S., Nasir, I.M., Damaševičius, R. (2025). Explainability of Disease Classification from Medical Images Using XGrad-Cam. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2024. Communications in Computer and Information Science, vol 2348. Springer, Cham. https://doi.org/10.1007/978-3-031-83435-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83435-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83434-9

  • Online ISBN: 978-3-031-83435-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics