Abstract
One of the worst diseases in recent years is thought to be brain tumors. If it is not identified in its early stages, it also results in death. Numerous deep learning and machine learning methods have been put out to accurately identify the presence of a brain tumor at any stage. A customized convolutional neural network (CNN) is proposed in this paper which has minimum layers as compared to the standalone networks. It has 11 layers which takes less training time and generates the correct class. The proposed model results are supported by the Explainable AI algorithm which gives practitioners a better visualization regarding the predicted class. The Axioms-based Gradient-weighted Class Activation Mapping (Xgrad Cam) is an extended version of Grad-Cam which dominates the areas that contribute to predicting the corresponding class. The proposed model has given us promising results not only on multi-class publicly available brain tumor datasets but also on binary-class brain tumor datasets. Two multi-class brain tumor datasets and one binary-class brain tumor dataset are used for testing the presented technique. These datasets have an imbalanced dataset and the customized model outperforms in those applications. The results are briefly discussed in the experimental results section.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Brain tumor binary dataset. https://www.kaggle.com/datasets/preetviradiya/brian-tumor-dataset. Accessed Dec 2023
Brain Tumor Classification (MRI). https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri. Accessed Dec 2023
Figshare brain tumor dataset. https://figshare.com/articles/dataset/brain-tumor-dataset/1512427. Accessed Dec 2023
Afshar, P., Mohammadi, A., Plataniotis, K.N.: Brain tumor type classification via capsule networks. In: 25th IEEE International Conference on Image Processing (ICIP), pp. 3129–3133. IEEE, Athens, Greece (2018)
Ari, A., Alpaslan, N., Hanbay, D.: Computer-aided tumor detection system using brain MR images. In: Medical Technologies National Conference (TIPTEKNO), pp. 1–4. IEEE (2015)
Badjie, B., Deniz Ülker, E.: A deep transfer learning based architecture for brain tumor classification using MR images. Inf. Technol. Control 51(2), 332–344 (2022). https://doi.org/10.5755/j01.itc.51.2.30835
Badžam, M., Barjaktarović, M.C.: Classification of brain tumors from MRI images using a convolutional neural network. Appl. Sci. 10(6) (2020). https://doi.org/10.3390/app10061999
Chaki, J., Wozniak, M.: Brain tumor categorization and retrieval using deep brain incep res architecture based reinforcement learning network. IEEE Access 11, 130584–130600 (2023). https://doi.org/10.1109/ACCESS.2023.3334434
Chaki, J., Woźniak, M.: A deep learning based four-fold approach to classify brain MRI: Btscnet. Biomedical Signal Process. Control 85 (2023). https://doi.org/10.1016/j.bspc.2023.104902
Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: Winter Conference on Applications of Computer Vision (WACV), pp. 839–847 (2018)
Desai, S., Ramaswamy, H.G.: Ablation-cam: Visual explanations for deep convolutional network via gradient-free localization. In: Winter Conference on Applications of Computer Vision (WACV), pp. 972–980 (2020)
Gupta, T., Gandhi, T.K., Gupta, R.K., Panigrahi, B.K.: Classification of patients with tumor using MR flair images. Pattern Recogn. Lett. 139, 112–117 (2017). https://doi.org/10.1016/j.patrec.2017.10.037
Jia, X., Ren, L., Cai, J.: Clinical implementation of AI technologies will require interpretable AI models. Med. Phys. 47(1), 1–4 (2020). https://doi.org/10.1002/mp.13891
Kadry, S., Damasevicius, R., Taniar, D., Rajinikanth, V., Lawal, I.A.: U-Net supported segmentation of ischemic-stroke-lesion from brain MRI slices. Proceedings of 2021 IEEE 7th International Conference on Bio Signals, Images and Instrumentation, ICBSII 2021 (2021). https://doi.org/10.1109/ICBSII51839.2021.9445126
Khan, M.A., et al.: Multimodal brain tumor detection and classification using deep saliency map and improved dragonfly optimization algorithm. Int. J. Imaging Syst. Technol. 33(2), 572–587 (2023). https://doi.org/10.1002/ima.22831
Khawaldeh, S., Pervaiz, U., Rafiq, A., Alkhawaldeh, R.: Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. Appl. Sci. 8(1), 27 (2017)
Kokila, B., Devadharshini, M., Anitha, A., Sankar, S.: Brain tumor detection and classification using deep learning techniques based on MRI images. J. Phys: Conf. Ser. 1916(1), 012226 (2021)
Kurdi, S.Z., Ali, M.H., Jaber, M.M., Saba, T., Rehman, A., Damaševičius, R.: Brain tumor classification using meta-heuristic optimized convolutional neural networks. J. Pers. Med. 13(2) (2023). https://doi.org/10.3390/jpm13020181
Liu, J., et al.: A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol. 19(6), 578–595 (2014)
Maqsood, S., Damasevicius, R., Shah, F.: An efficient approach for the detection of brain tumor using fuzzy logic and U-Net CNN classification. In: International Conference on Computational Science and Its Applications, pp. 105–118. Springer, Cham (2021)
Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, Salem, A.B.M.: Classification using deep learning neural networks for brain tumors. Future Comput. Inform. J. 3(1), 68–71 (2018). https://doi.org/10.1016/j.fcij.2017.12.001
Muzammil, S.R., Maqsood, S., Haider, S., Damaševičius, R.: CSID: a novel multimodal image fusion algorithm for enhanced clinical diagnosis. Diagnostics 10(11) (2020). https://doi.org/10.3390/diagnostics10110904
Mzoughi, H., et al.: Deep multi-scale 3D convolutional neural network (CNN) for MRI gliomas brain tumor classification. J. Digit. Imaging 33(4), 903–915 (2020)
Narayana, T.L., Reddy, T.S.: An efficient optimization technique to detect brain tumor from MRI images. In: Proceedings of the International Conference on Smart Systems and Inventive Technology, pp. 168–171 (2018). https://doi.org/10.1109/ICSSIT.2018.8748288
Rajinikanth, V., Kadry, S., Damasevicius, R., Sujitha, R.A., Balaji, G., Mohammed, M.A.: Glioma/glioblastoma detection in brain MRI using pre-trained deep-learning scheme. In: Proceedings of the 2022 3rd International Conference on Intelligent Computing, Instrumentation and Control Technologies: Computational Intelligence for Smart Systems, ICICICT 2022, pp. 987–990 (2022). https://doi.org/10.1109/ICICICT54557.2022.9917904
Rajinikanth, V., Kadry, S., Nam, Y.: Convolutional-neural-network assisted segmentation and SVM classification of brain tumor in clinical MRI slices. Inf. Technol. Control 50(2), 342–356 (2021). https://doi.org/10.5755/j01.itc.50.2.28087
Salçin, K.: Detection and classification of brain tumours from MRI images using faster R-CNN. Tehnički glasnik 13(4), 337–342 (2019)
Sarkar, S., Kumar, A., Chakraborty, S., Aich, S., Sim, J., Kim, H.: A CNN based approach for the detection of brain tumor using MRI scans. Test Eng. Manage. 83, 16580–16586 (2020)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7
Shahzadi, I., Tang, T.B., Meriadeau, F., Quyyum, A.: CNN LSTM: cascaded framework for brain tumour classification. In: IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp. 633–637. IEEE, Sarawak, Malaysia (2018)
Woźniak, M., Siłka, J., Wieczorek, M.: Deep neural network correlation learning mechanism for CT brain tumor detection. Neural Comput. Appl. 35(20), 14611–14626 (2023). https://doi.org/10.1007/s00521-021-05841-x
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tehsin, S., Nasir, I.M., Damaševičius, R. (2025). Interpreting CNN for Brain Tumor Classification Using XGrad-Cam. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2024. Communications in Computer and Information Science, vol 2348. Springer, Cham. https://doi.org/10.1007/978-3-031-83435-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-83435-6_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-83434-9
Online ISBN: 978-3-031-83435-6
eBook Packages: Computer ScienceComputer Science (R0)