Skip to main content

Interpreting CNN for Brain Tumor Classification Using XGrad-Cam

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2024)

Abstract

One of the worst diseases in recent years is thought to be brain tumors. If it is not identified in its early stages, it also results in death. Numerous deep learning and machine learning methods have been put out to accurately identify the presence of a brain tumor at any stage. A customized convolutional neural network (CNN) is proposed in this paper which has minimum layers as compared to the standalone networks. It has 11 layers which takes less training time and generates the correct class. The proposed model results are supported by the Explainable AI algorithm which gives practitioners a better visualization regarding the predicted class. The Axioms-based Gradient-weighted Class Activation Mapping (Xgrad Cam) is an extended version of Grad-Cam which dominates the areas that contribute to predicting the corresponding class. The proposed model has given us promising results not only on multi-class publicly available brain tumor datasets but also on binary-class brain tumor datasets. Two multi-class brain tumor datasets and one binary-class brain tumor dataset are used for testing the presented technique. These datasets have an imbalanced dataset and the customized model outperforms in those applications. The results are briefly discussed in the experimental results section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brain tumor binary dataset. https://www.kaggle.com/datasets/preetviradiya/brian-tumor-dataset. Accessed Dec 2023

  2. Brain Tumor Classification (MRI). https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri. Accessed Dec 2023

  3. Figshare brain tumor dataset. https://figshare.com/articles/dataset/brain-tumor-dataset/1512427. Accessed Dec 2023

  4. Afshar, P., Mohammadi, A., Plataniotis, K.N.: Brain tumor type classification via capsule networks. In: 25th IEEE International Conference on Image Processing (ICIP), pp. 3129–3133. IEEE, Athens, Greece (2018)

    Google Scholar 

  5. Ari, A., Alpaslan, N., Hanbay, D.: Computer-aided tumor detection system using brain MR images. In: Medical Technologies National Conference (TIPTEKNO), pp. 1–4. IEEE (2015)

    Google Scholar 

  6. Badjie, B., Deniz Ülker, E.: A deep transfer learning based architecture for brain tumor classification using MR images. Inf. Technol. Control 51(2), 332–344 (2022). https://doi.org/10.5755/j01.itc.51.2.30835

    Article  MATH  Google Scholar 

  7. Badžam, M., Barjaktarović, M.C.: Classification of brain tumors from MRI images using a convolutional neural network. Appl. Sci. 10(6) (2020). https://doi.org/10.3390/app10061999

  8. Chaki, J., Wozniak, M.: Brain tumor categorization and retrieval using deep brain incep res architecture based reinforcement learning network. IEEE Access 11, 130584–130600 (2023). https://doi.org/10.1109/ACCESS.2023.3334434

    Article  Google Scholar 

  9. Chaki, J., Woźniak, M.: A deep learning based four-fold approach to classify brain MRI: Btscnet. Biomedical Signal Process. Control 85 (2023). https://doi.org/10.1016/j.bspc.2023.104902

  10. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: Winter Conference on Applications of Computer Vision (WACV), pp. 839–847 (2018)

    Google Scholar 

  11. Desai, S., Ramaswamy, H.G.: Ablation-cam: Visual explanations for deep convolutional network via gradient-free localization. In: Winter Conference on Applications of Computer Vision (WACV), pp. 972–980 (2020)

    Google Scholar 

  12. Gupta, T., Gandhi, T.K., Gupta, R.K., Panigrahi, B.K.: Classification of patients with tumor using MR flair images. Pattern Recogn. Lett. 139, 112–117 (2017). https://doi.org/10.1016/j.patrec.2017.10.037

  13. Jia, X., Ren, L., Cai, J.: Clinical implementation of AI technologies will require interpretable AI models. Med. Phys. 47(1), 1–4 (2020). https://doi.org/10.1002/mp.13891

    Article  MATH  Google Scholar 

  14. Kadry, S., Damasevicius, R., Taniar, D., Rajinikanth, V., Lawal, I.A.: U-Net supported segmentation of ischemic-stroke-lesion from brain MRI slices. Proceedings of 2021 IEEE 7th International Conference on Bio Signals, Images and Instrumentation, ICBSII 2021 (2021). https://doi.org/10.1109/ICBSII51839.2021.9445126

  15. Khan, M.A., et al.: Multimodal brain tumor detection and classification using deep saliency map and improved dragonfly optimization algorithm. Int. J. Imaging Syst. Technol. 33(2), 572–587 (2023). https://doi.org/10.1002/ima.22831

    Article  MATH  Google Scholar 

  16. Khawaldeh, S., Pervaiz, U., Rafiq, A., Alkhawaldeh, R.: Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. Appl. Sci. 8(1), 27 (2017)

    Article  Google Scholar 

  17. Kokila, B., Devadharshini, M., Anitha, A., Sankar, S.: Brain tumor detection and classification using deep learning techniques based on MRI images. J. Phys: Conf. Ser. 1916(1), 012226 (2021)

    Google Scholar 

  18. Kurdi, S.Z., Ali, M.H., Jaber, M.M., Saba, T., Rehman, A., Damaševičius, R.: Brain tumor classification using meta-heuristic optimized convolutional neural networks. J. Pers. Med. 13(2) (2023). https://doi.org/10.3390/jpm13020181

  19. Liu, J., et al.: A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol. 19(6), 578–595 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maqsood, S., Damasevicius, R., Shah, F.: An efficient approach for the detection of brain tumor using fuzzy logic and U-Net CNN classification. In: International Conference on Computational Science and Its Applications, pp. 105–118. Springer, Cham (2021)

    Google Scholar 

  21. Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, Salem, A.B.M.: Classification using deep learning neural networks for brain tumors. Future Comput. Inform. J. 3(1), 68–71 (2018). https://doi.org/10.1016/j.fcij.2017.12.001

  22. Muzammil, S.R., Maqsood, S., Haider, S., Damaševičius, R.: CSID: a novel multimodal image fusion algorithm for enhanced clinical diagnosis. Diagnostics 10(11) (2020). https://doi.org/10.3390/diagnostics10110904

  23. Mzoughi, H., et al.: Deep multi-scale 3D convolutional neural network (CNN) for MRI gliomas brain tumor classification. J. Digit. Imaging 33(4), 903–915 (2020)

    Article  MATH  Google Scholar 

  24. Narayana, T.L., Reddy, T.S.: An efficient optimization technique to detect brain tumor from MRI images. In: Proceedings of the International Conference on Smart Systems and Inventive Technology, pp. 168–171 (2018). https://doi.org/10.1109/ICSSIT.2018.8748288

  25. Rajinikanth, V., Kadry, S., Damasevicius, R., Sujitha, R.A., Balaji, G., Mohammed, M.A.: Glioma/glioblastoma detection in brain MRI using pre-trained deep-learning scheme. In: Proceedings of the 2022 3rd International Conference on Intelligent Computing, Instrumentation and Control Technologies: Computational Intelligence for Smart Systems, ICICICT 2022, pp. 987–990 (2022). https://doi.org/10.1109/ICICICT54557.2022.9917904

  26. Rajinikanth, V., Kadry, S., Nam, Y.: Convolutional-neural-network assisted segmentation and SVM classification of brain tumor in clinical MRI slices. Inf. Technol. Control 50(2), 342–356 (2021). https://doi.org/10.5755/j01.itc.50.2.28087

    Article  MATH  Google Scholar 

  27. Salçin, K.: Detection and classification of brain tumours from MRI images using faster R-CNN. Tehnički glasnik 13(4), 337–342 (2019)

    Article  Google Scholar 

  28. Sarkar, S., Kumar, A., Chakraborty, S., Aich, S., Sim, J., Kim, H.: A CNN based approach for the detection of brain tumor using MRI scans. Test Eng. Manage. 83, 16580–16586 (2020)

    Google Scholar 

  29. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

  30. Shahzadi, I., Tang, T.B., Meriadeau, F., Quyyum, A.: CNN LSTM: cascaded framework for brain tumour classification. In: IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp. 633–637. IEEE, Sarawak, Malaysia (2018)

    Google Scholar 

  31. Woźniak, M., Siłka, J., Wieczorek, M.: Deep neural network correlation learning mechanism for CT brain tumor detection. Neural Comput. Appl. 35(20), 14611–14626 (2023). https://doi.org/10.1007/s00521-021-05841-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robertas Damaševičius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tehsin, S., Nasir, I.M., Damaševičius, R. (2025). Interpreting CNN for Brain Tumor Classification Using XGrad-Cam. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2024. Communications in Computer and Information Science, vol 2348. Springer, Cham. https://doi.org/10.1007/978-3-031-83435-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83435-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83434-9

  • Online ISBN: 978-3-031-83435-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics