Skip to main content

On a Tight Bound for the Maximum Number of Vertices that Belong to Every Metric Basis

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15536))

Included in the following conference series:

  • 17 Accesses

Abstract

Metric bases of graphs have been widely studied since their introduction in the 1970’s by Slater and, independently, by Harary and Melter. In this paper, we concentrate on the existence of vertices in a graph G that belong to all metric bases of G. We call these basis forced vertices, and denote the number of them by \(\textrm{bf}(G)\). We show that \(\textrm{bf}(G)\le 2/3(n-k-1)\) for any connected nontrivial graph G of order n having k vertices in each metric basis. In addition, we show that this bound can be attained. Furthermore, the previous result implies the bound \(\textrm{bf}(G)\le 2/5(n-1)\) formulated in terms of the order n of the graph for any nontrivial connected graph G. This result answers a question posed by Bagheri et al. in 2016. Moreover, we provide some realization results and consider some extremal cases related to basis forced vertices in a graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gh, B.B., Jannesari, M., Omoomi, B.: Unique basis graphs. Ars Comb. 129, 249–259 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Buczkowski, P.S., Chartrand, G., Poisson, C., Zhang, P.: On k-dimensional graphs and their bases. Period. Math. Hung. 46, 9–15 (2003). https://doi.org/10.1023/A:1025745406160

    Article  MathSciNet  MATH  Google Scholar 

  3. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000). https://doi.org/10.1016/S0166-218X(00)00198-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Claverol, M., et al.: Metric dimension of maximal outerplanar graphs. Bull. Malays. Math. Sci. Soc. 44(4), 2603–2630 (2021). https://doi.org/10.1007/s40840-020-01068-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Foster-Greenwood, B., Uhl, Ch.: Metric dimension of a direct product of three complete graphs. Electron. J. Combin. 31, Paper No. 2.13 (2024). https://doi.org/10.37236/12399

  6. Hakanen, A., Junnila, V., Laihonen, T.: The solid-metric dimension. Theor. Comput. Sci. 806, 156–170 (2020). https://doi.org/10.1016/j.tcs.2019.02.013

    Article  MathSciNet  MATH  Google Scholar 

  7. Hakanen, A., Junnila, V., Laihonen, T., Miikonen, H., Yero, I.G.: On the Maximum Number of Vertices that Belong to Every Metric Basis (in preparation)

    Google Scholar 

  8. Hakanen, A., Junnila, V., Laihonen, T., Puertas, M.L.: On the metric dimensions for sets of vertices. Discuss. Math. Graph Theory 43(1), 245–275 (2023). https://doi.org/10.7151/dmgt.2367

    Article  MathSciNet  MATH  Google Scholar 

  9. Hakanen, A., Junnila, V., Laihonen, T., Yero, I.G.: On vertices contained in all or in no metric basis. Discrete Appl. Math. 319, 407–423 (2022). https://doi.org/10.1016/j.dam.2021.12.004

    Article  MathSciNet  MATH  Google Scholar 

  10. Hakanen, A., Junnila, V., Laihonen, T., Yero, I.G.: On the unicyclic graphs having vertices that belong to all their (strong) metric bases. Discrete Appl. Math. 353, 191–207 (2024). https://doi.org/10.1016/j.dam.2024.04.020

    Article  MathSciNet  MATH  Google Scholar 

  11. Harary, F., Melter, R.: On the metric dimension of a graph. Ars Combin. 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  12. Hernando, C., Mora, M., Pelayo, I.M.: Locating domination in bipartite graphs and their complements. Discrete Appl. Math. 263, 195–203 (2019). https://doi.org/10.1016/j.dam.2018.09.034

    Article  MathSciNet  MATH  Google Scholar 

  13. Mashkaria, S., Ódor, G., Thiran, P.: On the robustness of the metric dimension of grid graphs to adding a single edge. Discrete Appl. Math. 316, 1–27 (2022). https://doi.org/10.1016/j.dam.2022.02.014

    Article  MathSciNet  MATH  Google Scholar 

  14. Sedlar, J., Škrekovski, R.: Bounds on metric dimensions of graphs with edge disjoint cycles. Appl. Math. Comput. 396, 125908 (2021). https://doi.org/10.1016/j.amc.2020.125908

    Article  MathSciNet  MATH  Google Scholar 

  15. Sedlar, J., Škrekovski, R.: Metric dimensions vs. cyclomatic number of graphs with minimum degree at least two. Appl. Math. Comput. 427, 127147 (2022). https://doi.org/10.1016/j.amc.2022.127147

    Article  MathSciNet  MATH  Google Scholar 

  16. Sedlar, J., Škrekovski, R.: Vertex and edge metric dimensions of unicyclic graphs. Discrete Appl. Math. 314, 81–92 (2022). https://doi.org/10.1016/j.dam.2022.02.022

    Article  MathSciNet  MATH  Google Scholar 

  17. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Tillquist, R.C., Lladser, M.E.: Low-dimensional representation of genomic sequences. J. Math. Biol. 79(1), 1–29 (2019). https://doi.org/10.1007/s00285-019-01348-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Tillquist, R.C., Frongillo, R.M., Lladser, M.E.: Getting the lay of the land in discrete space: a survey of metric dimension and its applications. SIAM Rev. 65(4), 919–962 (2023). https://doi.org/10.1137/21M1409512

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, J., Tian, F., Liu, Y., Pang, J., Miao, L.: On graphs of order \(n\) with metric dimension \(n-4\). Graphs Combin. 39, Paper No. 29 (2023). https://doi.org/10.1007/s00373-023-02627-x

  21. Wu, J., Wang, L., Yang, W.: Learning to compute the metric dimension of graphs. Appl. Math. Comput. 432, 127350 (2022). https://doi.org/10.1016/j.amc.2022.127350

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Ismael G. Yero has been partially supported by the Spanish Ministry of Science and Innovation through the grant PID2023-146643NB-I00. Ville Junnila, Tero Laihonen and Havu Miikonen have been partially supported by Academy of Finland grant number 338797. Anni Hakanen was supported by Turku Collegium for Science, Medicine and Technology (TCSMT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Havu Miikonen .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hakanen, A., Junnila, V., Laihonen, T., Miikonen, H., Yero, I. (2025). On a Tight Bound for the Maximum Number of Vertices that Belong to Every Metric Basis. In: Gaur, D., Mathew, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2025. Lecture Notes in Computer Science, vol 15536. Springer, Cham. https://doi.org/10.1007/978-3-031-83438-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83438-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83437-0

  • Online ISBN: 978-3-031-83438-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics