Skip to main content

Parameterized Complexity of Coupon Coloring of Graphs

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15536))

Included in the following conference series:

  • 23 Accesses

Abstract

Given a graph G(VE), a q-coupon coloring of G refers to a coloring \(f : V \rightarrow [q]\) such that the following is true for all \(v \in V\): for all \(i \in [q]\), there exists \(u \in N(v)\) such that \(f(u) = i\). Given a graph G, the \(q\)-Coupon Coloring problem is to decide whether G admits a q-coupon coloring. The \(q\)-Coupon Coloring problem is shown to be NP-complete. We initiate the study of parameterized complexity of the \(q\)-Coupon Coloring problem. It is implied by existing results that parameterization by q is unlikely to admit FPT algorithms. We study the \(q\)-Coupon Coloring problem parameterized by structural parameters including neighborhood diversity, twin cover, distance to clique and treewidth of the graph. We show FPT algorithms when the parameter is neighborhood diversity, twin cover and distance to clique and prove tight lower bounds when the parameter is treewidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, W., Egerstedt, M., Liu, C.-H., Thomas, R., Whalen, P.: Deploying robots with two sensors in \(k_{1,6}\) -free graphs. J. Graph Theory 82(3), 236–252 (2016). https://doi.org/10.1002/jgt.21898

    Article  MathSciNet  MATH  Google Scholar 

  2. Akbari, S., Azimian, M., Fazli Khani, A., Samimi, B., Zahiri, E.: 2-coupon coloring of cubic graphs containing 3-cycle or 4-cycle. Discrete Appl. Math. 351, 105–110 (2024). https://doi.org/10.1016/j.dam.2024.03.012

    Article  MathSciNet  MATH  Google Scholar 

  3. Akbari, S., Motiei, M., Mozaffari, S., Yazdanbod, S.: Cubic graphs with total domatic number at least two. Discussiones Mathematicae Graph Theory 38, 75–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aram, H., Sheikholeslami, S.M., Volkmann, L.: On the total domatic number of regular graphs. Trans. Comb. 1(1), 45–51 (2012). https://doi.org/10.22108/toc.2012.760. ISSN 2251–8657

  5. Ashok, P., Bhargava, R., Gupta, N., Khalid, M., Yadav, D.: Structural parameterization for minimum conflict-free colouring. Discret. Appl. Math. 319, 239–253 (2022). https://doi.org/10.1016/j.dam.2021.12.026

    Article  MathSciNet  MATH  Google Scholar 

  6. Calamoneri, T.: The l (h, k)-labelling problem: a survey and annotated bibliography. Comput. J. 49(5), 585–608 (2006). https://doi.org/10.1093/comjnl/bxl018

    Article  MATH  Google Scholar 

  7. Chen, B., Kim, J.H., Tait, M., Verstraete, J.: On coupon colorings of graphs. Discrete Appl. Math. 193, 94–101 (2015). https://doi.org/10.1016/j.dam.2015.04.026

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, H., Jin, Z.: Coupon coloring of cographs. Appl. Math. Comput. 308, 90–95 (2017). https://doi.org/10.1016/j.amc.2017.03.023

    Article  MathSciNet  MATH  Google Scholar 

  9. Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  10. Donner, Q.: On the number of list-colorings. J. Graph Theory 16(3), 239–245 (1992). https://doi.org/10.1002/jgt.3190160307

    Article  MathSciNet  MATH  Google Scholar 

  11. Dunbar, J., et al.: Fall colorings of graphs. J. Comb. Math. Comb. Comput. 33, 257–273 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Erdős, P.: On a combinatorial problem. Nordisk Matematisk Tidskrift 11(1), 5–10 (1963). ISSN 00291412

    MathSciNet  MATH  Google Scholar 

  13. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33(1), 94–136 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Francis, P., Rajendraprasad, D.: On coupon coloring of cartesian product of some graphs. In: Mudgal, A., Subramanian, C.R. (eds.) CALDAM 2021. LNCS, vol. 12601, pp. 309–316. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67899-9_25

    Chapter  MATH  Google Scholar 

  15. Ganian, R: Improving vertex cover as a graph parameter. Discrete Math. Theor. Comput. Sci. 17(Discrete Algorithms) (2015)

    Google Scholar 

  16. Goddard, W., Henning, M.A.: Thoroughly distributed colorings. arXiv preprint arXiv:1609.09684 (2016). https://arxiv.org/pdf/1609.09684

  17. Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nordic J. Comput. 5(2), 128–142 (1998). ISSN 1236-6064

    MathSciNet  MATH  Google Scholar 

  18. Henning, M.A., Yeo, A.: 2-colorings in k-regular k-uniform hypergraphs. Eur. J. Combinatorics 34(7), 1192–1202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Irving, R.W., Manlove, D.F.: The b-chromatic number of a graph. Discrete Appl. Math. 91(1–3), 127–141 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jansen, K., Rohwedder, L.: On integer programming, discrepancy, and convolution. Math. Oper. Res. 48(3), 1481–1495 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koivisto, M., Laakkonen, P., Lauri, J.: Np-completeness results for partitioning a graph into total dominating sets. Theoret. Comput. Sci. 818, 22–31 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Koutecký, M.: A note on coloring \((4k_1,c_4,c_6)\)-free graphs with a \(c_7\). 38(5) (2022). https://doi.org/10.1007/s00373-022-02553-4. ISSN 0911-0119

  24. Kouteckỳ, M.: Solving hard problems on neighborhood diversity. Master’s thesis (2013)

    Google Scholar 

  25. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64, 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized problems. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 760–776. SIAM (2011). https://doi.org/10.1137/16M1104834

  27. Östergård, P.R.J.: On a hypercube coloring problem. J. Comb. Theory, Ser. A 108(2), 199–204 (2004). https://doi.org/10.1016/j.jcta.2004.06.010

    Article  MathSciNet  MATH  Google Scholar 

  28. Shadravan, M., Borzooei, R.A.: Coupon coloring of kneser graph k (n, 2). Discrete Math. Algorithms Appl. 16(03), 2350020 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shi, Y., Wei, M., Yue, J., Zhao, Y.: Coupon coloring of some special graphs. J. Comb. Optim. 33(1), 156–164 (2015). https://doi.org/10.1007/s10878-015-9942-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discret. Math. 10(4), 529–550 (1997). https://doi.org/10.1137/S0895480194275825

    Article  MathSciNet  MATH  Google Scholar 

  31. Thankachan, R., Rajamani, P.: On coupon coloring of Cayley graphs. In: Bagchi, A., Muthu, R. (eds.) CALDAM 2023. LNCS, vol. 13947, pp. 184–191. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25211-2_14

    Chapter  MATH  Google Scholar 

  32. Kostochka, A.V., Woodall, D.R.: Density conditions for panchromatic colourings of hypergraphs. Combinatorica 21(4), 515–541 (2001). https://doi.org/10.1007/s004930100011

    Article  MathSciNet  MATH  Google Scholar 

  33. Zavlanos, M.M.: Distributed control of robotic networks. PhD thesis, University of Pennsylvania (2008)

    Google Scholar 

  34. Zelinka, B.: Total domatic number and degrees of vertices of a graph. Math. Slovaca 39(1), 7–11 (1989)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work has been supported by the Anusandhan National Research Foundation under grant number MTR/2023/001078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeesha Ashok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashok, P., Devarakonda, P., Phogat, S., Rayala, S.A.R., Sherin, J.A. (2025). Parameterized Complexity of Coupon Coloring of Graphs. In: Gaur, D., Mathew, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2025. Lecture Notes in Computer Science, vol 15536. Springer, Cham. https://doi.org/10.1007/978-3-031-83438-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83438-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83437-0

  • Online ISBN: 978-3-031-83438-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics