Abstract
Given a graph G(V, E), a q-coupon coloring of G refers to a coloring \(f : V \rightarrow [q]\) such that the following is true for all \(v \in V\): for all \(i \in [q]\), there exists \(u \in N(v)\) such that \(f(u) = i\). Given a graph G, the \(q\)-Coupon Coloring problem is to decide whether G admits a q-coupon coloring. The \(q\)-Coupon Coloring problem is shown to be NP-complete. We initiate the study of parameterized complexity of the \(q\)-Coupon Coloring problem. It is implied by existing results that parameterization by q is unlikely to admit FPT algorithms. We study the \(q\)-Coupon Coloring problem parameterized by structural parameters including neighborhood diversity, twin cover, distance to clique and treewidth of the graph. We show FPT algorithms when the parameter is neighborhood diversity, twin cover and distance to clique and prove tight lower bounds when the parameter is treewidth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abbas, W., Egerstedt, M., Liu, C.-H., Thomas, R., Whalen, P.: Deploying robots with two sensors in \(k_{1,6}\) -free graphs. J. Graph Theory 82(3), 236–252 (2016). https://doi.org/10.1002/jgt.21898
Akbari, S., Azimian, M., Fazli Khani, A., Samimi, B., Zahiri, E.: 2-coupon coloring of cubic graphs containing 3-cycle or 4-cycle. Discrete Appl. Math. 351, 105–110 (2024). https://doi.org/10.1016/j.dam.2024.03.012
Akbari, S., Motiei, M., Mozaffari, S., Yazdanbod, S.: Cubic graphs with total domatic number at least two. Discussiones Mathematicae Graph Theory 38, 75–82 (2015)
Aram, H., Sheikholeslami, S.M., Volkmann, L.: On the total domatic number of regular graphs. Trans. Comb. 1(1), 45–51 (2012). https://doi.org/10.22108/toc.2012.760. ISSN 2251–8657
Ashok, P., Bhargava, R., Gupta, N., Khalid, M., Yadav, D.: Structural parameterization for minimum conflict-free colouring. Discret. Appl. Math. 319, 239–253 (2022). https://doi.org/10.1016/j.dam.2021.12.026
Calamoneri, T.: The l (h, k)-labelling problem: a survey and annotated bibliography. Comput. J. 49(5), 585–608 (2006). https://doi.org/10.1093/comjnl/bxl018
Chen, B., Kim, J.H., Tait, M., Verstraete, J.: On coupon colorings of graphs. Discrete Appl. Math. 193, 94–101 (2015). https://doi.org/10.1016/j.dam.2015.04.026
Chen, H., Jin, Z.: Coupon coloring of cographs. Appl. Math. Comput. 308, 90–95 (2017). https://doi.org/10.1016/j.amc.2017.03.023
Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Donner, Q.: On the number of list-colorings. J. Graph Theory 16(3), 239–245 (1992). https://doi.org/10.1002/jgt.3190160307
Dunbar, J., et al.: Fall colorings of graphs. J. Comb. Math. Comb. Comput. 33, 257–273 (2000)
Erdős, P.: On a combinatorial problem. Nordisk Matematisk Tidskrift 11(1), 5–10 (1963). ISSN 00291412
Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33(1), 94–136 (2003)
Francis, P., Rajendraprasad, D.: On coupon coloring of cartesian product of some graphs. In: Mudgal, A., Subramanian, C.R. (eds.) CALDAM 2021. LNCS, vol. 12601, pp. 309–316. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67899-9_25
Ganian, R: Improving vertex cover as a graph parameter. Discrete Math. Theor. Comput. Sci. 17(Discrete Algorithms) (2015)
Goddard, W., Henning, M.A.: Thoroughly distributed colorings. arXiv preprint arXiv:1609.09684 (2016). https://arxiv.org/pdf/1609.09684
Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nordic J. Comput. 5(2), 128–142 (1998). ISSN 1236-6064
Henning, M.A., Yeo, A.: 2-colorings in k-regular k-uniform hypergraphs. Eur. J. Combinatorics 34(7), 1192–1202 (2013)
Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
Irving, R.W., Manlove, D.F.: The b-chromatic number of a graph. Discrete Appl. Math. 91(1–3), 127–141 (1999)
Jansen, K., Rohwedder, L.: On integer programming, discrepancy, and convolution. Math. Oper. Res. 48(3), 1481–1495 (2023)
Koivisto, M., Laakkonen, P., Lauri, J.: Np-completeness results for partitioning a graph into total dominating sets. Theoret. Comput. Sci. 818, 22–31 (2020)
Koutecký, M.: A note on coloring \((4k_1,c_4,c_6)\)-free graphs with a \(c_7\). 38(5) (2022). https://doi.org/10.1007/s00373-022-02553-4. ISSN 0911-0119
Kouteckỳ, M.: Solving hard problems on neighborhood diversity. Master’s thesis (2013)
Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64, 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x
Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized problems. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 760–776. SIAM (2011). https://doi.org/10.1137/16M1104834
Östergård, P.R.J.: On a hypercube coloring problem. J. Comb. Theory, Ser. A 108(2), 199–204 (2004). https://doi.org/10.1016/j.jcta.2004.06.010
Shadravan, M., Borzooei, R.A.: Coupon coloring of kneser graph k (n, 2). Discrete Math. Algorithms Appl. 16(03), 2350020 (2024)
Shi, Y., Wei, M., Yue, J., Zhao, Y.: Coupon coloring of some special graphs. J. Comb. Optim. 33(1), 156–164 (2015). https://doi.org/10.1007/s10878-015-9942-2
Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discret. Math. 10(4), 529–550 (1997). https://doi.org/10.1137/S0895480194275825
Thankachan, R., Rajamani, P.: On coupon coloring of Cayley graphs. In: Bagchi, A., Muthu, R. (eds.) CALDAM 2023. LNCS, vol. 13947, pp. 184–191. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25211-2_14
Kostochka, A.V., Woodall, D.R.: Density conditions for panchromatic colourings of hypergraphs. Combinatorica 21(4), 515–541 (2001). https://doi.org/10.1007/s004930100011
Zavlanos, M.M.: Distributed control of robotic networks. PhD thesis, University of Pennsylvania (2008)
Zelinka, B.: Total domatic number and degrees of vertices of a graph. Math. Slovaca 39(1), 7–11 (1989)
Acknowledgement
This work has been supported by the Anusandhan National Research Foundation under grant number MTR/2023/001078.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ashok, P., Devarakonda, P., Phogat, S., Rayala, S.A.R., Sherin, J.A. (2025). Parameterized Complexity of Coupon Coloring of Graphs. In: Gaur, D., Mathew, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2025. Lecture Notes in Computer Science, vol 15536. Springer, Cham. https://doi.org/10.1007/978-3-031-83438-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-83438-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-83437-0
Online ISBN: 978-3-031-83438-7
eBook Packages: Computer ScienceComputer Science (R0)