Skip to main content

Maximizing the Maximum Degree in Ordered Nearest Neighbor Graphs

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15536))

Included in the following conference series:

  • 16 Accesses

Abstract

For an ordered point set in a Euclidean space or, more generally, in an abstract metric space, the ordered Nearest Neighbor Graph is obtained by connecting each of the points to its closest predecessor by a directed edge. We show that for every set of n points in \(\mathbb {R}^{d}\), there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree at least \(\log {n}/(4d)\). Apart from the 1/(4d) factor, this bound is the best possible. As for the abstract setting, we show that for every n-element metric space, there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree \(\varOmega (\sqrt{\log {n}/\log \log {n}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For instance, in the notation of Sect. 4, it is not possible that two triples \(\{1,2,3\}\) and \(\{1,3,4\}\) are blue, while \(\{1,2,4\}\) is green, because otherwise we would have \(v_1v_2 < v_1v_3 < v_1v_4 < v_1v_2\), a contradiction.

References

  1. Agarwal, P., Eppstein, D., Matoušek, J.: Dynamic half-space reporting, geometric optimization, and minimum spanning trees. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pp. 80–90 (1992)

    Google Scholar 

  2. Almendra-Hernández, V.H., Martínez-Sandoval, L.: On prescribing total orders and preorders to pairwise distances of points in Euclidean space. Comput. Geom. 107, 101898 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H., Vigneron, A.: Sparse geometric graphs with small dilation. Comput. Geom. 40(3), 207–219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose, P., Gudmundsson, J., Morin, P.: Ordered theta graphs. Comput. Geom. 28(1), 11–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42, 249–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bose, P., Maheshwari, A., Narasimhan, G., Smid, M., Zeh, N.: Approximating geometric bottleneck shortest paths. Comput. Geom. 29(3), 233–249 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyvalenkov, P., Dodunekov, S., Musin, O.R.: A survey on the kissing numbers. Serdica Math. J. 38, 507–522 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Clarkson, K.: Approximation algorithms for shortest path motion planning. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 56–65 (1987)

    Google Scholar 

  9. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, 3rd edn. Springer, Heidelberg (2008)

    Google Scholar 

  10. Eppstein, D.: Fully dynamic maintenance of Euclidean minimum spanning trees and maxima of decomposable functions. Technical Report 92-88, University of California, Irvine (1992)

    Google Scholar 

  11. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier Science, Amsterdam (2000)

    Google Scholar 

  12. Eppstein, D., Paterson, M.S., Yao, F.F.: On nearest-neighbor graphs. Discret. Comput. Geom. 17, 263–282 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harary, F., Jacobson, M.S., Lipman, M.J., McMorris, F.R.: Abstract sphere-of-influence graphs. Math. Comput. Model. 17(11), 77–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, X., Fox, J.: Independent sets in hypergraphs with a forbidden link. Proc. Lond. Math. Soc. 123(4), 384–409 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier Science, Amsterdam (2000)

    Google Scholar 

  16. Mitchell, J.S.B., Mulzer, W.: Proximity algorithms. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn. CRC Press (2017)

    Google Scholar 

  17. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  18. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, New York (1985)

    Book  MATH  Google Scholar 

  19. Rogers, C.A., Zong, C.: Covering convex bodies by translates of convex bodies. Mathematika 44(1), 215–218 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smid, M.: Closest-point problems in computational geometry. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 877–936. Elsevier Science, Amsterdam (2000)

    Google Scholar 

  21. Yao, A.C.C.: On constructing minimum spanning trees in \(k\)-dimensional spaces and related problems. SIAM J. Comput. 11(4), 721–736 (1982)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the organizers of the Focused Week on Geometric Spanners (Oct 23–Oct 29, 2023) at the Erdős Center, Budapest, where this joint work began. Research partially supported by ERC Advanced Grant ‘GeoScape’ No. 882971, by the Erdős Center and by the Ministry of Innovation and Technology NRDI Office within the framework of the Artificial Intelligence National Laboratory (RRF-2.3.1-21-2022-00004). Research was also partially supported by the Overseas Research Fellowship of IIIT-Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Péter Ágoston , Adrian Dumitrescu , Arsenii Sagdeev , Karamjeet Singh or Ji Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ágoston, P., Dumitrescu, A., Sagdeev, A., Singh, K., Zeng, J. (2025). Maximizing the Maximum Degree in Ordered Nearest Neighbor Graphs. In: Gaur, D., Mathew, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2025. Lecture Notes in Computer Science, vol 15536. Springer, Cham. https://doi.org/10.1007/978-3-031-83438-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83438-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83437-0

  • Online ISBN: 978-3-031-83438-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics