Abstract
For integers \(k \ge 3\), \(c \ge 2\), and \(s \ge 0\), let \(M^*_k(c, s)\) be the least integer such that any set of at least \(M^*_k(c, s)\) points in the plane in general position, colored with c colors, contains a monochromatic k-gon (not necessarily convex) with at most s interior points. Denote by \(\lambda _k^*(c)\) the least integer such that \(M^*_k(c, \lambda _k^*(c)) < \infty \). It follows from results in [3, 5] that
In this paper, we extend this result to \(k \ge 4\). Specifically, we show that, for \(c\ge 3\),
Moreover, for \(k \ge 5\) and \(c \ge 2\), we show that
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aichholzer, O., et al.: Matching edges and faces in polygonal partitions. Comput. Geom. 39(2), 134–141 (2008)
Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Vogtenhuber, B.: Large bichromatic point sets admit empty monochromatic 4-gons. SIAM J. Discret. Math. 23(4), 2147–2155 (2010)
Basu, D., Basu, K., Bhattacharya, B.B., Das, S.: Almost empty monochromatic triangles in planar point sets. Discrete Appl. Math. 210, 207–213 (2016)
Bose, P., Toussaint, G.: Characterizing and efficiently computing quadrangulations of planar point sets. Comput. Aided Geom. Des. 14(8), 763–785 (1997)
Cravioto-Lagos, J., González-Martínez, A.C., Sakai, T., Urrutia, J.: On almost empty monochromatic triangles and convex quadrilaterals in colored point sets. Graphs Combinatorics 35(6), 1475–1493 (2019)
Devillers, O., Hurtado, F., Károlyi, G., Seara, C.: Chromatic variants of the Erdos-Szekeres theorem on points in convex position. Comput. Geom. 26(3), 193–208 (2003)
Erdős, P.: Some more problems on elementary geometry. Austral. Math. Soc. Gaz 5(2), 52–54 (1978)
Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)
Erdős, P., Szekeres, G.: On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest. Eötvös Sect. Math, 3(4), 53–62 (1960)
Gerken, T.: Empty convex hexagons in planar point sets. Discrete Comput. Geom. 39, 239–272 (2008)
Grima, C., del Carmen Hernando Martín, M., Huemer, C., Hurtado Díaz, F.A.: On some partitioning problems for two-colored point sets. XIII Encuentros de Geometría Computacional, 221–228 (2009)
Harborth, H.: Konvexe fünfecke in ebenen punktmengen. Elem. Math. 33, 116–118 (1978)
Heule, M.J.H., Scheucher, M.: Happy ending: an empty hexagon in every set of 30 points. In: Finkbeiner, B., Kovács, L. (eds.) TACAS 2024. LNCS, vol. 14570, pp. 61–80. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57246-3_5
Holmsen, A.F., Mojarrad, H.N., Pach, J., Tardos, G.: Two extensions of the Erdős–Szekeres problem. J. Eur. Math. Soc. 22(12) (2020)
Horton, J.D.: Sets with no empty convex 7-Gons. Can. Math. Bull. 26(4), 482–484 (1983)
Kalbfleisch, J.D.: A combinatorial problem on convex regions. In: 1970 Proceedings of Louisiana Conference on Combinatorics, Graph Theory and Computing, pp. 180–188 (1970)
Koshelev, V.A.: On the Erdős-Szekeres problem. In Doklady Mathematics, vol. 76, pp. 603–605. Springer (2007)
Liu, L., Zhang, Y.: Almost empty monochromatic quadrilaterals in planar point sets. Math. Notes 103, 415–429 (2018)
Nicolás, C.M.: The empty hexagon theorem. Discrete Comput. Geom. 38, 389–397 (2007)
Nyklová, H.: Almost empty polygons. Stud. Sci. Math. Hung. 40(3), 269–286 (2003)
Overmars, M.: Finding sets of points without empty convex 6-Gons. Discrete Comput. Geom. 29, 153–158 (2002)
Suk, A.: On the Erdős-Szekeres convex polygon problem. J. Am. Math. Soc. 30(4), 1047–1053 (2017)
Szekeres, G., Peters, L.: Computer solution to the 17-point erdős-szekeres problem. ANZIAM J. 48(2), 151–164 (2006)
Valtr, P.: On empty hexagons. Contemp. Math. 453, 433–442 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bhattacharya, B.B., Das, S., Islam, S.S., Sen, S. (2025). Almost Empty Monochromatic Polygons in Planar Point Sets. In: Gaur, D., Mathew, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2025. Lecture Notes in Computer Science, vol 15536. Springer, Cham. https://doi.org/10.1007/978-3-031-83438-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-83438-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-83437-0
Online ISBN: 978-3-031-83438-7
eBook Packages: Computer ScienceComputer Science (R0)