Skip to main content

Almost Empty Monochromatic Polygons in Planar Point Sets

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15536))

Included in the following conference series:

  • 17 Accesses

Abstract

For integers \(k \ge 3\), \(c \ge 2\), and \(s \ge 0\), let \(M^*_k(c, s)\) be the least integer such that any set of at least \(M^*_k(c, s)\) points in the plane in general position, colored with c colors, contains a monochromatic k-gon (not necessarily convex) with at most s interior points. Denote by \(\lambda _k^*(c)\) the least integer such that \(M^*_k(c, \lambda _k^*(c)) < \infty \). It follows from results in [3, 5] that

$$ \left\lfloor \frac{c-1}{2} \right\rfloor \le \lambda _3^*(c) \le c-3. $$

In this paper, we extend this result to \(k \ge 4\). Specifically, we show that, for \(c\ge 3\),

$$ 2 \left\lfloor \frac{c-1}{2} \right\rfloor \le \lambda _4^*(c) \le 2 c-4. $$

Moreover, for \(k \ge 5\) and \(c \ge 2\), we show that

$$ (k-2) \left\lfloor \frac{c-1}{2} \right\rfloor \le \lambda _k^*(c) \le (k-2) c - (k-1). $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aichholzer, O., et al.: Matching edges and faces in polygonal partitions. Comput. Geom. 39(2), 134–141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Vogtenhuber, B.: Large bichromatic point sets admit empty monochromatic 4-gons. SIAM J. Discret. Math. 23(4), 2147–2155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basu, D., Basu, K., Bhattacharya, B.B., Das, S.: Almost empty monochromatic triangles in planar point sets. Discrete Appl. Math. 210, 207–213 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose, P., Toussaint, G.: Characterizing and efficiently computing quadrangulations of planar point sets. Comput. Aided Geom. Des. 14(8), 763–785 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cravioto-Lagos, J., González-Martínez, A.C., Sakai, T., Urrutia, J.: On almost empty monochromatic triangles and convex quadrilaterals in colored point sets. Graphs Combinatorics 35(6), 1475–1493 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Devillers, O., Hurtado, F., Károlyi, G., Seara, C.: Chromatic variants of the Erdos-Szekeres theorem on points in convex position. Comput. Geom. 26(3), 193–208 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erdős, P.: Some more problems on elementary geometry. Austral. Math. Soc. Gaz 5(2), 52–54 (1978)

    MathSciNet  MATH  Google Scholar 

  8. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)

    MathSciNet  MATH  Google Scholar 

  9. Erdős, P., Szekeres, G.: On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest. Eötvös Sect. Math, 3(4), 53–62 (1960)

    Google Scholar 

  10. Gerken, T.: Empty convex hexagons in planar point sets. Discrete Comput. Geom. 39, 239–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grima, C., del Carmen Hernando Martín, M., Huemer, C., Hurtado Díaz, F.A.: On some partitioning problems for two-colored point sets. XIII Encuentros de Geometría Computacional, 221–228 (2009)

    Google Scholar 

  12. Harborth, H.: Konvexe fünfecke in ebenen punktmengen. Elem. Math. 33, 116–118 (1978)

    MathSciNet  MATH  Google Scholar 

  13. Heule, M.J.H., Scheucher, M.: Happy ending: an empty hexagon in every set of 30 points. In: Finkbeiner, B., Kovács, L. (eds.) TACAS 2024. LNCS, vol. 14570, pp. 61–80. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57246-3_5

    Chapter  MATH  Google Scholar 

  14. Holmsen, A.F., Mojarrad, H.N., Pach, J., Tardos, G.: Two extensions of the Erdős–Szekeres problem. J. Eur. Math. Soc. 22(12) (2020)

    Google Scholar 

  15. Horton, J.D.: Sets with no empty convex 7-Gons. Can. Math. Bull. 26(4), 482–484 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kalbfleisch, J.D.: A combinatorial problem on convex regions. In: 1970 Proceedings of Louisiana Conference on Combinatorics, Graph Theory and Computing, pp. 180–188 (1970)

    Google Scholar 

  17. Koshelev, V.A.: On the Erdős-Szekeres problem. In Doklady Mathematics, vol. 76, pp. 603–605. Springer (2007)

    Google Scholar 

  18. Liu, L., Zhang, Y.: Almost empty monochromatic quadrilaterals in planar point sets. Math. Notes 103, 415–429 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nicolás, C.M.: The empty hexagon theorem. Discrete Comput. Geom. 38, 389–397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nyklová, H.: Almost empty polygons. Stud. Sci. Math. Hung. 40(3), 269–286 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Overmars, M.: Finding sets of points without empty convex 6-Gons. Discrete Comput. Geom. 29, 153–158 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Suk, A.: On the Erdős-Szekeres convex polygon problem. J. Am. Math. Soc. 30(4), 1047–1053 (2017)

    Article  MATH  Google Scholar 

  23. Szekeres, G., Peters, L.: Computer solution to the 17-point erdős-szekeres problem. ANZIAM J. 48(2), 151–164 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Valtr, P.: On empty hexagons. Contemp. Math. 453, 433–442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumya Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharya, B.B., Das, S., Islam, S.S., Sen, S. (2025). Almost Empty Monochromatic Polygons in Planar Point Sets. In: Gaur, D., Mathew, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2025. Lecture Notes in Computer Science, vol 15536. Springer, Cham. https://doi.org/10.1007/978-3-031-83438-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83438-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83437-0

  • Online ISBN: 978-3-031-83438-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics