Skip to main content

On the Parameterized Complexity of Odd Coloring

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15536))

Included in the following conference series:

  • 11 Accesses

Abstract

A proper vertex coloring of a connected graph G is called an odd coloring if, for every vertex v of G there is a color that appears odd number of times in the open neighborhood of v. The minimum number of colors required to obtain an odd coloring of G is called the odd chromatic number of G and it is denoted by \(\chi _{o}(G)\). The problem of determining \(\chi _o(G)\) is \(\textsf{NP}\)-hard. Given a graph G and an integer k, the Odd Coloring problem is to decide whether \(\chi _o(G)\) is at most k. In this paper, we study the problem from the viewpoint of parameterized complexity. In particular, we study the problem with respect to structural graph parameters. We prove that the problem admits a polynomial kernel when parameterized by distance to clique. On the other hand, we show that the problem cannot have a polynomial kernel when parameterized by vertex cover number unless \(\textsf{NP} \subseteq \mathsf{Co {\text{- }} NP/poly}\). We show that the problem is fixed-parameter tractable when parameterized by distance to cluster, distance to co-cluster, or neighborhood diversity. We show that the problem is \(\mathsf{W[1]}\)-hard parameterized by clique-width. Finally, we study the problem on restricted graph classes. We show that the problem can be solved in polynomial time on cographs and split graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abel, Z., et al.: Conflict-free coloring of graphs. SIAM J. Discrete Math. 32(4), 2675–2702 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahn, J., Im, S., il Oum, S.: The proper conflict-free \( k \)-coloring problem and the odd \( k \)-coloring problem are np-complete on bipartite graphs. arXiv preprint arXiv:2208.08330 (2022)

  3. Ajwani, D., Elbassioni, K., Govindarajan, S., Ray, S.: Conflict-free coloring for rectangle ranges using o\((n^{0.382})\) colors. In: Proceedings of the Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 181–187. ACM (2007)

    Google Scholar 

  4. Bar-Noy, A., Cheilaris, P., Smorodinsky, S.: Deterministic conflict-free coloring for intervals: from offline to online. ACM Trans. Algorithms (TALG) 4(4), 44 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Caro, Y., Petruševski, M., Škrekovski, R.: Remarks on odd colorings of graphs. Discret. Appl. Math. 321, 392–401 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheilaris, P.: Conflict-free coloring (Ph.D. thesis). City University of New York (2009)

    Google Scholar 

  7. Cho, E.-K., Choi, I., Kwon, H., Park, B.: Odd coloring of sparse graphs and planar graphs. Discret. Math. 346(5), 113305 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions, minors and complexity issues. RAIRO-Theor. Inform. Appl. 26(3), 257–286 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret. Appl. Math. 101(1–3), 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cranston, D.W., Lafferty, M., Song, Z.-X.: A note on odd colorings of 1-planar graphs. Discrete Appl. Math. 330, 112–117 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  13. Downey, R.G., Fellows, M.R.: Parameterized Complexity, vol. 3. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-0515-9

    Book  MATH  Google Scholar 

  14. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33(1), 94–136 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fabrici, I., Lužar, B., Rindošová, S., Soták, R.: Proper conflict-free and unique-maximum colorings of planar graphs with respect to neighborhoods. Discret. Appl. Math. 324, 80–92 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gargano, L., Rescigno, A.A.: Complexity of conflict-free colorings of graphs. Theor. Comput. Sci. 566, 39–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hickingbotham, R.: Odd colourings, conflict-free colourings and strong colouring numbers. arXiv preprint arXiv:2203.10402 (2022)

  18. Lev-Tov, N., Peleg, D.: Conflict-free coloring of unit disks. Discret. Appl. Math. 157(7), 1521–1532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, C-H.: Proper conflict-free list-coloring, subdivisions, and layered treewidth. arXiv preprint arXiv:2203.12248 (2022)

  20. Nagy-György, J., Imreh, C.: Online hypergraph coloring. Inf. Process. Lett. 109(1), 23–26 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pach, J., Tardos, G.: Conflict-free colourings of graphs and hypergraphs. Comb. Probab. Comput. 18(5), 819–834 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Petr, J., Portier, J.: The odd chromatic number of a planar graph is at most 8. Graphs Comb. 39(2), 28 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  23. Petruševski, M., Škrekovski, R.: Colorings with neighborhood parity condition. Discret. Appl. Math. 321, 385–391 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Bhyravarapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhyravarapu, S., Kumari, S., Vinod Reddy, I. (2025). On the Parameterized Complexity of Odd Coloring. In: Gaur, D., Mathew, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2025. Lecture Notes in Computer Science, vol 15536. Springer, Cham. https://doi.org/10.1007/978-3-031-83438-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83438-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83437-0

  • Online ISBN: 978-3-031-83438-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics