Skip to main content

Polynomial Time Algorithms for Hop Domination

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15536))

Included in the following conference series:

  • 9 Accesses

Abstract

A set \(S \subseteq V(G)\) is said to be a hop dominating set if every vertex \( u \in V(G) \setminus S\), there exists a vertex \(v \in S\) such that \(d(u,v)=2\) where d(uv) represents the distance between u and v in G. The minimum k for which there exists a hop dominating set of size k is called the hop domination number denoted by \(\gamma _{h}(G)\). Henning et al. (Inf. Process. Lett. 2020) showed that Hop Domination  is NP-hard for bipartite graphs and chordal graphs. The following are the results of this paper.

  • Henning et al. presented a linear time algorithm for solving Hop Domination on bipartite permutation graphs which is a proper subset of biconvex bipartite graphs. In this paper we present a polynomial algorithm for the problem on biconvex bipartite graphs, a superclass of bipartite permutation graphs.

  • We show that Hop Domination is polynomial time solvable on interval graphs which are a subclass of chordal graphs.

  • We initiate the study on this problem from the parameterized complexity perspective. We show that the decision version of Hop Domination is W[1]-hard when parameterized by solution size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chartrand, G., Harary, F., Hossain, M., Schultz, K.: Exact \(2 \)-step domination in graphs. Math. Bohem. 120(2), 125–134 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hersh, P.: On exact n-step domination. Discret. Math. 205(1–3), 235–239 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, X., Wang, Y.: On total domination and hop domination in diamond-free graphs. Bull. Malaysian Math. Sci. Soc. 43(2), 1885–1891 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Natarajan, C., Ayyaswamy, S.K.: Hop domination in graphs-II. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica 23, 187–199 (2015)

    Google Scholar 

  5. Henning, M.A., Rad, N.J.: On 2-step and hop dominating sets in graphs. Graphs Comb. 33(4), 913–927 (2017)

    Google Scholar 

  6. Henning, M.A., Pal, S., Pradhan, D.: Algorithm and hardness results on hop domination in graphs. Inf. Process. Lett. 153, 105872 (2020)

    Google Scholar 

  7. Cygan, M., et al.: Parameterized Algorithms. Springer, Marcian Pilipczuk (2015)

    Google Scholar 

  8. Enright, J., Stewart, L., Tardos, G.: On list coloring and list homomorphism of permutation and interval graphs. SIAM J. Discret. Math. 28(4), 1675–1685 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhyravarapu, S., Kalyanasundaram, S., Mathew, R.: Conflict-free coloring on claw-free graphs and interval graphs. In: 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022), Schloss-Dagstuhl-Leibniz Zentrum für Informatik (2022)

    Google Scholar 

  10. Díaz, J., Diner, Ö.Y., Serna, M.J., Serra, O.: On list k-coloring convex bipartite graphs. CoRR, abs/2002.02729 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Karthika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karthika, D., Muthucumaraswamy, R., Bhyravarapu, S., Kumar, P. (2025). Polynomial Time Algorithms for Hop Domination. In: Gaur, D., Mathew, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2025. Lecture Notes in Computer Science, vol 15536. Springer, Cham. https://doi.org/10.1007/978-3-031-83438-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-83438-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-83437-0

  • Online ISBN: 978-3-031-83438-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics